1000 resultados para Warm Dense Matter
Resumo:
The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.
Resumo:
The concentrations of K~+,Na~+,Ca~(2+),Mg~(2+),F~-,Cl~-,NO_3~-,SO_4~(2-) and HCO_3~- in Lantian, Binxian, Ningxian, Qingyang, Mubo and Jiyuan loess sections by last interglacial on China Loess Plateau and its conductance are determinated. The results are: According to the average ions concentration in different sections, the soluble salts in south sections are mainly transported from land dusts which fall with rain, but the most salts in north sections are released from minerals by soil formation. The spatial changes of dominating soluble salts ,gypsum in south sections and Glauber'salt and fluorite in north sections, indicates the different arid degrees on Loess Plateau. The north sections are more arid than south, so that the diffluent ions become the main component in soluble salts. The salts enriched in Stage2 and 4, the arid and cold paleoclimate period, in south loess sections because that the soluble ions were swept by water, although they sedimented in warm period. On north Loess Plateau, as evaporation became the determinative factor on salts sediment, the soluble matter enriched in Stage 1,3 and 5, the warm and humid paleoclimate period. According to the conductance of different oxygen isotope period in loess sections, on Stage 1 and 5, the salts enrichment were charged by temperature and participate at the same time, so its concentrations are high on central Loess Plateau; on Stage2,3 and 4, the salts concentrations in south sections are higher than north because their weak movement. The diffluent ions are not sensitive to climate changes on China Loess Plateau, but Ca~(2+), Mg~(2+), NO_3~-SO_4~(2-) are sensitive.
Resumo:
Daihai Lake, a graben-type closed lake, lies ca. 10 km east of Liangcheng County, Inner Mongolia, north-central China. For its location at the transition of semi-humid and semi-arid areas, and in the north edge of the East Asian monsoon, the lake is sensitive to changes in climate and environment. Based on analyses of total inorganic carbon (TIC), total organic carbon (TOC) and the ratio of total organic carbon to total nitrogen (C/N ratio) of DH99a core sediments recovered in the central part of Daihai Lake, the data suggest Holocene climatic history of the lake region is reconstructed. In this paper, the TIC and TOC contents of the lake sediments are closely related to climate changes. 1) Changes in TIC content of the lake sediments is closely related to climate, which directly reflect changes of temperature in the lake region, i.e., higher TIC content is linked with warmer temperature and stronger evaporation; 2) Changes in TOC and C/N ratio reflect the regional precipitation, i.e., relatively higher TOC content and C/N ratio indicate higher rainfall which results in stronger river flow and more organic matter entering into the lake. Data of the TIC content, TOC content and C/N ratio of DH99a core sediments suggest that climatic history of the Daihai Lake region is characterized by 4 stages. During the interval of ca. 11200-7500 a BP, higher TIC content, relatively lower TOC content and C/N ratio value indicate a warmer and slight dry condition over the lake area. From ca. 7500 to 4500 a BP, high values of TIC content, with an increase in TOC content and C/N ratio suggest the climate was warm and humid. Changes of TIC content, TOC content show that both temperature and precipitation displayed obvious fluctuations during the period, i.e., slightly cool and humid ca. 7500-6700 a BP, warm and moist ca. 6700-5300a BP, mild and comparatively humid ca. 5300-4500a BP. Between ca. 4500 and 2900 a BP, TIC content and TOC content decreased gradually while fluctuating, C/N ratio displayed a decreasing trend. These data imply that the climate generally became cooler and drier than the preceding period. The lowest values of TIC content, TOC content and C/N ratio during the interval of ca. 2900-0 a BP, demonstrate that the climate was severe, and became cool and dry. However the relative higher values of TIC content, TOC content and C/N ratio between ca. 1700 and 1300 a BP may denote an increase both in temperature and in precipitation. Data of TIC content, TOC content and C/N ratio in Daihai DH99a core sediments indicate that the warm period was asynchronous with the humid time, the warm interval began in ca. 11200 a BP, and ended in ca. 2900 a BP. The humid period was ca. 7500-2900 a BP. During ca. 7500^500 a BP, the climate was warm and humid, which was the climatic optimum of the Holocene Epoch in the Daihai Lake region. Data of TIC content, TOC content and C/N ratio in Daihai DH99a core sediments imply that the Holocene climate was unstable, the fluctuating events happened occasionally. Such as the cold and dry climate in ca. 4400-4200a BP, the warm and humid climatic condition in the period between ca.1700 and 1300a BP.
Resumo:
The term black carbon is used to describe a relatively inert and ubiquitous form of carbon, comprising a range of materials from char and charcoal to element or graphite carbon produced by the incomplete combustion of fossil fuels and biomass. Due to its inertness, the BC in soils, lacustrine and marine sediments and ice can persist over a long period of time. So BC signatures in geological deposits can be used as evidence of natural fires happened in their surroundings. To study the temporal and spatial changes in paleofires over the Chinese Loess Plateau, black carbon concentrations were analyzed on the loess-paleosol samples from three sections including Lijiayuan, Lingtai and Weinan along a north-south transect. Using the orbitally-tuned time-scales of the sections, the black carbon sedimentation rates (BCSR) were calculated. Meanwhile, with objective to document fine resolution fire history during late Pleistocene and Holocene periods, we measured BC concentrations of loess-paleosol samples at dense sampling intervals since 28 ka BP. in Lijiayuan section. The BCSR of the samples were also calculated. In addition, we also conducted observation on black carbon morphologies to examine their sources. Based on the results, the following remarks can be concluded: 1. In the last two glacial cycles, the BCSR values in glacial periods are 2-3 times higher than in interglacial periods, and the BCSR variability has a relatively strong precession-associated 23 kyr period, suggesting that the glacial cold-dry climate conditions were apt to induce natural fires over the Loess Plateau, 2. Comparison of the BCSR records among the three loess sections demonstrates that natural fire occurrence was much more intensive and frequent in the northern and interglacial periods. 3. Pollen records and carbon isotope analyses of organic matter have shown that the Loess Plateau was covered by an Artemisia-dominated grassland vegetation both during glacial and interglacial periods, So grassland fires were the dominant fire types in the Plateau, which is also corroborated by the observation of black carbon morphology. In addition, statistics and comparison of BC particle sizes among the sections demonstrated that BC records probably reflected local fires. 4. According to previous studies about the effect of fires on vegetation changes, we considered that the fires might play an important role in the expansion of grassland during glacial periods, besides the control of climate changes. 5. The high resolution black carbon record in Lijiayuan section has shown that the BCSR series well documented Younger dryas (YD) and Heinrich (HI和H2) events, suggesting that natural fires in the northwestern part of Chinese Loess Plateau could regularly respond to the millennial scale climate oscillation.
Resumo:
Three soil spots were found in Grove Mountains, east Antarctica during 1999-2000, when the Chinare 16th Antarctic expedition teams entered the inland Antarctica. The characteristics of soils in Grove Mountains are desert pavement coating the surface, abundant water soluble salt, negligible organ matter, and severe rubification and salinization, scarces of liquid water, partly with dry permafrost, corresponding with the soils of McMurdo, Transantarctic. The soils age of Grove Mountains is 0.5-3.5Ma. Podzolization and redoximorphism are the main features in coastal Wilks region, in addition, there is strong enrichment of organic matter in many soils of this region. The main soil processes of Fildes Peninsula of King George Island include the intense physical weathering, decalcification and weakly biochemical processes. Peat accumulation is the main processes in Arctic because of humid and cold environment.Based on synthesis of heavy minerals, particle size, quartz grain surface textures, as well as pollen in soils, the soils parent materials of Grove Mountains derived from alluvial sediment of the weathering bedrocks around soils, and formed during the warm period of Pliocene. The detailed information is followed .l)The results of heavy minerals particle size showed the parent minerals derived form the weathering bedrocks around soils. 2)The quartz sand surface textures include glacial crushing and abrasion such as abrasive conchoidal fractures and grain edges, abrasive subparallel linear fractures and angularity, subaqueous environments produce V-shaped and irregular impact pits, polished surface, and chemical textures, such as beehive solution pits, which showed the water is the main force during the sediment of the soil parent minerals. 3)The pollen consist of 40 plant species, of which at least 5 species including Ranunculaceae, Chenopodiaceae, Artemisia, Gramineae, Podocarpus belong to the Neogene vegetation except the species from the old continent. Compared with Neogene vegetation of Transantarctic Mountains, Antarctic, we concluded that they grow in warm Pliocene.