819 resultados para Visual surveillance, Human activity recognition, Video annotation
Resumo:
We examined acute molecular responses in skeletal muscle to divergent exercise stimuli by combining consecutive bouts of resistance and endurance exercise. Eight men [22.9 ± 6.3 yr, body mass of 73.2 ± 4.5 kg, peak O2 uptake (V?O2peak) of 54.0 ± 5.7 ml·kg-1·min-1] were randomly assigned to complete trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1 repetition maximum) followed by a bout of endurance exercise (30 min cycling, 70% V?O2peak) or vice versa. Muscle biopsies were obtained from the vastus lateralis at rest, 15 min after each exercise bout, and after 3 h of passive recovery to determine early signaling and mRNA responses. Phosphorylation of Akt and Akt1Ser473 were elevated 15 min after resistance exercise compared with cycling, with the greatest increase observed when resistance exercise followed cycling (?55%; P < 0.01). TSC2-mTOR-S6 kinase phosphorylation 15 min after each bout of exercise was similar regardless of the exercise mode. The cumulative effect of combined exercise resulted in disparate mRNA responses. IGF-I mRNA content was reduced when cycling preceded resistance exercise (-42%), whereas muscle ring finger mRNA was elevated when cycling was undertaken after resistance exercise (?52%; P < 0.05). The hexokinase II mRNA level was higher after resistance cycling (?45%; P < 0.05) than after cycling-resistance exercise, whereas modest increases in peroxisome proliferator-activated receptor gamma coactivator-1? mRNA did not reveal an order effect. We conclude that acute responses to diverse bouts of contractile activity are modified by the exercise order. Moreover, undertaking divergent exercise in close proximity influences the acute molecular profile and likely exacerbates acute "interference".
Resumo:
A fundamental part of many authentication protocols which authenticate a party to a human involves the human recognizing or otherwise processing a message received from the party. Examples include typical implementations of Verified by Visa in which a message, previously stored by the human at a bank, is sent by the bank to the human to authenticate the bank to the human; or the expectation that humans will recognize or verify an extended validation certificate in a HTTPS context. This paper presents general definitions and building blocks for the modelling and analysis of human recognition in authentication protocols, allowing the creation of proofs for protocols which include humans. We cover both generalized trawling and human-specific targeted attacks. As examples of the range of uses of our construction, we use the model presented in this paper to prove the security of a mutual authentication login protocol and a human-assisted device pairing protocol.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.
Resumo:
Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.
Resumo:
Upon overexpression of integrin αvβ3 and its engagement by vitronectin, we previously showed enhanced adhesion, proliferation, and motility of human ovarian cancer cells. By studying differential expression of genes possibly related to these tumor biological events, we identified the epidermal growth-factor receptor (EGF-R) to be under control of αvβ3 expression levels. Thus in the present study we characterized αvβ3-dependent changes of EGF-R and found significant upregulation of its expression and activity which was reflected by prominent changes of EGF-R promoter activity. Upon disruption of DNA-binding motifs for the transcription factors p53, ETF, the repressor ETR, p50, and c-rel, respectively, we sought to identify DNA elements contributing to αvβ3-mediated EGF-R promoter induction. Both, the p53- and ETF-mutant, while exhibiting considerably lower EGF-R promoter activity than the wild type promoter, retained inducibility by αvβ3. Mutation of the repressor motif ETR, as expected, enhanced EGF-R promoter activity with a further moderate increase upon αvβ3 elevation. The p50-mutant displayed EGF-R promoter activity almost comparable to that of the wild type promoter with no impairment of induction by αvβ3. However, the activity of an EGF-R promoter mutant displaying a disrupted c-rel-binding motif did not only prominently decline, but, moreover, was not longer responsive to enhanced αvβ3, involving this DNA element in αvβ3-dependent EGF-R upregulation. Moreover, αvβ3 did not only increase the EGF-R but, moreover, also led to obvious co-clustering on the cancer cell surface. By studying αvβ3/EGF-R-effects on the focal adhesion kinase (FAK) and the mitogen activated protein kinases (MAPK) p44/42 (erk−1/erk−2), having important functions in synergistic crosstalk between integrins and growth-factor receptors, we found for both significant enhancement of expression and activity upon αvβ3/VN interaction and cell stimulation by EGF. Upregulation of the EGF-R by integrin αvβ3, both receptor molecules with a well-defined role as targets for cancer treatment, might represent an additional mechanism to adapt synergistic receptor signaling and crosstalk in response to an altered tumor cell microenvironment during ovarian cancer progression.
Resumo:
Using Media-Access-Control (MAC) address for data collection and tracking is a capable and cost effective approach as the traditional ways such as surveys and video surveillance have numerous drawbacks and limitations. Positioning cell-phones by Global System for Mobile communication was considered an attack on people's privacy. MAC addresses just keep a unique log of a WiFi or Bluetooth enabled device for connecting to another device that has not potential privacy infringements. This paper presents the use of MAC address data collection approach for analysis of spatio-temporal dynamics of human in terms of shared space utilization. This paper firstly discuses the critical challenges and key benefits of MAC address data as a tracking technology for monitoring human movement. Here, proximity-based MAC address tracking is postulated as an effective methodology for analysing the complex spatio-temporal dynamics of human movements at shared zones such as lounge and office areas. A case study of university staff lounge area is described in detail and results indicates a significant added value of the methodology for human movement tracking. By analysis of MAC address data in the study area, clear statistics such as staff’s utilisation frequency, utilisation peak periods, and staff time spent is obtained. The analyses also reveal staff’s socialising profiles in terms of group and solo gathering. The paper is concluded with a discussion on why MAC address tracking offers significant advantages for tracking human behaviour in terms of shared space utilisation with respect to other and more prominent technologies, and outlines some of its remaining deficiencies.
Resumo:
We present a novel approach to video summarisation that makes use of a Bag-of-visual-Textures (BoT) approach. Two systems are proposed, one based solely on the BoT approach and another which exploits both colour information and BoT features. On 50 short-term videos from the Open Video Project we show that our BoT and fusion systems both achieve state-of-the-art performance, obtaining an average F-measure of 0.83 and 0.86 respectively, a relative improvement of 9% and 13% when compared to the previous state-of-the-art. When applied to a new underwater surveillance dataset containing 33 long-term videos, the proposed system reduces the amount of footage by a factor of 27, with only minor degradation in the information content. This order of magnitude reduction in video data represents significant savings in terms of time and potential labour cost when manually reviewing such footage.
Resumo:
This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.
Resumo:
This study evaluated 4th-grade students' understanding of the concept of physical activity and assessed the effects of two interventions to enhance the students' understanding of this concept. Students were randomly assigned to 1 of 3 conditions: the video group (n = 40) watched a 5-min video describing physical activity; the verbal group (n = 42) listened to a generic description of physical activity; the control group received no instruction (n = 45). Students completed a 17-item checklist testing their understanding of the concept of physical activity. Compared to controls, students in the verbal and video group demonstrated significantly higher checklist scores, with the video group scoring significantly higher than the verbal group. Only 35.6% of the controls, compared to 52.4% and 70.0% of the verbal and video groups respectively, could classify greater than or equal to 15 of the checklist items correctly, The results indicate that, without intervention, children have a limited understanding of the concept of physical activity.
Resumo:
Facial expression recognition (FER) has been dramatically developed in recent years, thanks to the advancements in related fields, especially machine learning, image processing and human recognition. Accordingly, the impact and potential usage of automatic FER have been growing in a wide range of applications, including human-computer interaction, robot control and driver state surveillance. However, to date, robust recognition of facial expressions from images and videos is still a challenging task due to the difficulty in accurately extracting the useful emotional features. These features are often represented in different forms, such as static, dynamic, point-based geometric or region-based appearance. Facial movement features, which include feature position and shape changes, are generally caused by the movements of facial elements and muscles during the course of emotional expression. The facial elements, especially key elements, will constantly change their positions when subjects are expressing emotions. As a consequence, the same feature in different images usually has different positions. In some cases, the shape of the feature may also be distorted due to the subtle facial muscle movements. Therefore, for any feature representing a certain emotion, the geometric-based position and appearance-based shape normally changes from one image to another image in image databases, as well as in videos. This kind of movement features represents a rich pool of both static and dynamic characteristics of expressions, which playa critical role for FER. The vast majority of the past work on FER does not take the dynamics of facial expressions into account. Some efforts have been made on capturing and utilizing facial movement features, and almost all of them are static based. These efforts try to adopt either geometric features of the tracked facial points, or appearance difference between holistic facial regions in consequent frames or texture and motion changes in loca- facial regions. Although achieved promising results, these approaches often require accurate location and tracking of facial points, which remains problematic.
Resumo:
This paper presents Sequence Matching Across Route Traversals (SMART); a generally applicable sequence-based place recognition algorithm. SMART provides invariance to changes in illumination and vehicle speed while also providing moderate pose invariance and robustness to environmental aliasing. We evaluate SMART on vehicles travelling at highly variable speeds in two challenging environments; firstly, on an all-terrain vehicle in an off-road, forest track and secondly, using a passenger car traversing an urban environment across day and night. We provide comparative results to the current state-of-the-art SeqSLAM algorithm and investigate the effects of altering SMART’s image matching parameters. Additionally, we conduct an extensive study of the relationship between image sequence length and SMART’s matching performance. Our results show viable place recognition performance in both environments with short 10-metre sequences, and up to 96% recall at 100% precision across extreme day-night cycles when longer image sequences are used.
Resumo:
Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.