989 resultados para Visual stimuli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis of pancreatic beta cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of beta cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-kappaB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-kappaB activity, and protects the conditionally immortalized pancreatic insulinoma betaTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects beta cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kitten's auditory cortex (including the first and second auditory fields AI and AII) is known to send transient axons to either ipsi- or contralateral visual areas 17 and 18. By the end of the first postnatal month the transitory axons, but not their neurons of origin, are eliminated. Here we investigated where these neurons project after the elimination of the transitory axon. Eighteen kittens received early (postnatal day (pd) 2 - 5) injections of long lasting retrograde fluorescent traces in visual areas 17 and 18 and late (pd 35 - 64) injections of other retrograde fluorescent tracers in either hemisphere, mostly in areas known to receive projections from AI and AII in the adult cat. The middle ectosylvian gyrus was analysed for double-labelled neurons in the region corresponding approximately to AI and AII. Late injections in the contralateral (to the analysed AI, AII) hemisphere including all of the known auditory areas, as well as some visual and 'association' areas, did not relabel neurons which had had transient projections to either ipsi- or contralateral visual areas 17 - 18. Thus, AI and AII neurons after eliminating their transient juvenile projections to visual areas 17 and 18 do not project to the other hemisphere. In contrast, relabelling was obtained with late injections in several locations in the ipsilateral hemisphere; it was expressed as per cent of the population labelled by the early injections. Few neurons (0 - 2.5%) were relabelled by large injections in the caudal part of the posterior ectosylvian gyrus and the adjacent posterior suprasylvian sulcus (areas DP, P, VP). Multiple injections in the middle ectosylvian gyrus relabelled a considerably larger percentage of neurons (13%). Single small injections in the middle ectosylvian gyrus (areas AI, AII), the caudal part of the anterior ectosylvian gyrus and the rostral part of the posterior ectosylvian gyrus relabelled 3.1 - 7.0% of neurons. These neurons were generally near (<2.0 mm) the outer border of the late injection sites. Neurons with transient projections to ipsi- or contralateral visual areas 17 and 18 were relabelled in similar proportions by late injections at any given location. Thus, AI or AII neurons which send a transitory axon to ipsi- or contralateral visual areas 17 and 18 are most likely to form short permanent cortical connections. In that respect, they are similar to medial area 17 neurons that form transitory callosal axons and short permanent axons to ipsilateral visual areas 17 and 18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural comparisons of bilateral sensory inputs are essential for visual depth perception and accurate localization of sounds in space. All animals, from single-cell prokaryotes to humans, orient themselves in response to environmental chemical stimuli, but the contribution of spatial integration of neural activity in olfaction remains unclear. We investigated this problem in Drosophila melanogaster larvae. Using high-resolution behavioral analysis, we studied the chemotaxis behavior of larvae with a single functional olfactory neuron on either the left or right side of the head, allowing us to examine unilateral or bilateral olfactory input. We developed new spectroscopic methods to create stable odorant gradients in which odor concentrations were experimentally measured. In these controlled environments, we observed that a single functional neuron provided sufficient information to permit larval chemotaxis. We found additional evidence that the overall accuracy of navigation is enhanced by the increase in the signal-to-noise ratio conferred by bilateral sensory input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Working memory has been defined as the ability to maintain and manipulate on-line a limited amount of information. A large number of studies have investigated visuospatial working memory in schizophrenia. However, today, the available data concerning the functioning of these processes in schizophrenia are largely controversial. These inconclusive results are due to incomplete knowledge on processes involved in visuospatial working memory tasks. Recent studies suggest that visuospatial working memory processes may be divided into an active monitoring and a storing components. Furthermore, it has been shown that visuospatial working memory processes are strongly interconnected with early encoding processes (perceptual organization). In our view, the two working memory components, and the relationship that they entertain with early encoding processes, may be investigated using dynamic and static visuospatial stimuli in a working memory paradigm. In this thesis we aim at comparing dynamic and static visuospatial working memory processes in patients with schizophrenia and first-episode of psychosis patients. This analysis may clarify the functioning of visuospatial working memory and the dysfunction of these processes in schizophrenia. Our results are in accord with the hypothesis of two visuospatial working memory subcomponents. Dynamic, rather than static, stimuli are strongly involved in the visuospatial working memory encoding process. Indeed, the results are congruent with the idea that static stimuli may be strongly encoded by parallel perceptual organization processes. Patients with schizophrenia show important deficits in both working memory and perceptual organization encoding processes. In contrast, perceptual organization processes seem spared in firstepisodepsychosis patients. Considering our findings, we propose a model to explain the degradation of visuospatial processes involved in a working memory task during schizophrenia. Résumé: La mémoire de travail est définie comme la capacité à maintenir et manipuler « on-line » un nombre limité d'informations pour une courte période de temps (de l'ordre de quelques dizaines de secondes). Un grand nombre d'études a montré que les processus de mémoire de travail visuo spatiale peuvent être affectés dans la schizophrénie. Malgré cela, les données concernant les déficits de ces processus chez des patients qui souffrent de schizophrénie sont contradictoires. La difficulté de comprendre la nature des déficits de mémoire de travail visuospatiale dans la schizophrénie est en grande partie imputable aux connaissances encore lacunaires sur le fonctionnement de ces processus dans un état non pathologique. Dans cette thèse, on cherche à élucider le fonctionnement des processus de mémoire de travail visuospatiale. Pour cela, on a créé un nouveau paradigme qui sollicite ce type de mémoire. Dans ce paradigme, on présente des stimuli dynamiques et statiques. Après un court délai, le sujet doit reconnaître le stimulus qu'il a visualisé parmi six possibilités. Sur la base de récentes études neurophysiologiques, neuroanatomiques et psychologiques, nous avançons l'hypothèse que l'encodage de stimuli dynamiques et statiques repose sur deux processus distincts de mémoire de travail : un processus d'organisation qui manipule les informations sensorielles et un processus dé stockage qui est responsable du maintien de l'information au cours de la manipulation. Ces processus sont en relation directe avec les processus responsables d'une organisation de l'information à un niveau précoce du traitement visuel. Les études présentées dans cette thèse ont pour but de vérifier la pertinence de la distinction entre les processus de mémoire de travail visuospatiale, selon la modalité «dynamique » ou «statique ». L'investigation des processus dynamiques et statiques de mémoire de travail dans la schizophrénie présente deux avantages principaux. Premièrement, 1a pathologie pourrait permettre de mettre en évidence, par les dysfonctionnements qu'elle présente, la pertinence des hypothèses sur le fonctionnement des processus de mémoire de travail visuospatiale et de leur interaction avec les processus sensoriels. Deuxièmement, ces investigations rendent possible une analyse des dysfonctions des différents processus dans la schizophrénie. Dans cette thèse, on analyse aussi les processus de mémoire de travail «dynamiques » et «statiques » chez des sujets dans une phase initiale de la psychose. Les résultats de cette étude permettent de faire une comparaison avec ceux obtenus avec des patients qui souffrent de schizophrénie. Cette comparaison peut apporter des informations intéressantes sur l'évolution des dysfonctions dans les processus impliqués dans les fonctions de mémoire de travail visuospatiale au cours de la schizophrénie. Les résultats obtenus dans les différentes études sont cohérents avec l'hypothèse d'une implication différente des processus d'organisation de la mémoire de travail sur des stimuli dynamiques et statiques. -Nos résultats montrent que les processus de mémoire de travail responsables de l'organisation (manipulation active) des informations est déficitaire dans la schizophrénie. Ce déficit semble jouer un rôle de premier plan dans la dégradation des processus visuospatiaux au cours de la schizophrénie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early blindness results in occipital cortex neurons responding to a wide range of auditory and tactile stimuli. These changes in tuning properties are accompanied by an extensive reorganization of the occipital cortex that includes alterations in anatomical structure, neurochemical and metabolic pathways. Although it has been established in animal models that neurochemical pathways are heavily affected by early visual deprivation, the effects of blindness on these pathways in humans is still not well characterized. Here, using (1)H magnetic resonance spectroscopy in nine early blind and normally sighted subjects, we find that early blindness is associated with higher levels of creatine, choline and myo-Inositol and indications of lower levels of GABA within the occipital cortex. These results suggest that the cross-modal responses associated with early blindness may, at least in part, be driven by changes within occipital biochemical pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite myriad studies, neurophysiologic mechanisms mediating illusory contour (IC) sensitivity remain controversial. Among the competing models one favors feed-forward effects within lower-tier cortices (V1/V2). Another situates IC sensitivity first within higher-tier cortices, principally lateral-occipital cortices (LOC), with later feedback effects in V1/V2. Still others postulate that LOC are sensitive to salient regions demarcated by the inducing stimuli, whereas V1/V2 effects specifically support IC sensitivity. We resolved these discordances by using misaligned line gratings, oriented either horizontally or vertically, to induce ICs. Line orientation provides an established assay of V1/V2 modulations independently of IC presence, and gratings lack salient regions. Electrical neuroimaging analyses of visual evoked potentials (VEPs) disambiguated the relative timing and localization of IC sensitivity with respect to that for grating orientation. Millisecond-by-millisecond analyses of VEPs and distributed source estimations revealed a main effect of grating orientation beginning at 65 ms post-stimulus onset within the calcarine sulcus that was followed by a main effect of IC presence beginning at 85 ms post-stimulus onset within the LOC. There was no evidence for differential processing of ICs as a function of the orientation of the grating. These results support models wherein IC sensitivity occurs first within the LOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare the performance Glaucoma Quality of Life-15 (GQL-15) Questionnaire, intraocular pressure measurement (IOP Goldmann tonometry) and a measure of visual field loss using Moorfields Motion Displacement Test (MDT) in detecting glaucomatous eyes from a self referred population. Methods: The GQL-15 has been suggested to correlate with visual disability and psychophysical measures of visual function in glaucoma patients. The Moorfields MDT is a multi location perimetry test with 32 white line stimuli presented on a grey background on a standard laptop computer. Each stimulus is displaced between computer frames to give the illusion of "apparent motion". Participants (N=312, 90% older than 45 years; 20.5% family history of glaucoma) self referred to an advertised World Glaucoma Day (March 2009) Jules Gonin Eye Hospital, Lausanne Switzerland. Participants underwent a clinical exam (IOP, slit lamp, angle and disc examination by a general ophthalmologist), 90% completed a GQL-15 questionnaire and over 50% completed a MDT test in both eyes. Those who were classified as abnormal on one or more of the following (IOP >21 mmHg/ GQL-15 score >20/ MDT score >2/ clinical exam) underwent a follow up clinical examination by a glaucoma specialist including imaging and threshold perimetry. After the second examination subjects were classified as "healthy"(H), "glaucoma suspect" (GS) (ocular hypertension and/or suspicious disc, angle closure with SD) or "glaucomatous" (G). Results: One hundred and ten subjects completed all 4 initial examinations; of these 69 were referred to complete the 2nd examination and were classified as; 8 G, 24 GS, and 37 H. MDT detected 7/8 G, and 7/24 GS, with false referral rate of 3.8%. IOP detected 2/8 G and 8/24 GS, with false referral rate of 8.9%. GQL-15 detected 4/8 G, 16/24 GS with a false referral rate of 42%. Conclusions: In this sample of participants attending a self referral glaucoma detection event, the MDT performed significantly better than the GQL-15 and IOP in discriminating glaucomatous patients from healthy subjects. Further studies are required to assess the potential of the MDT as a glaucoma screening tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 29-year-old pregnant woman noted acute visual loss following emergent Caesarean section complicated by excessive uterine bleeding. Postoperative visual acuity was count fingers in both eyes. Funduscopic changes were consistent with a diagnosis of anaemia-associated ischaemic optic neuropathy and retinopathy. One month later, because of persistent anaemia and poor visual recovery, blood transfusion was given. Following transfusion, the patient's vision improved over the next 6 months. In an otherwise healthy patient, visual loss associated with postoperative blood loss may still be partially reversible with correction of the anaemia, even after a delayed period of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is an ocular disease with high prevalence among elderly persons. Two different forms exist: dry AMD, usually slowly progressive, and neovascular AMD (wet form) more aggressive. Photodynamic therapy is used to treat the wet form and anti VEGF treatments recently became available and offer a real change in the prognostic of wet AMD. Two products are registered and used in Switzerland (Macugen and Lucentis), a third "off labels product", Avastin is also currently used in clinical practice. Nevertheless, both the duration of treatment and the number of injection requested to stabilise the disease were not defined in the studies. Ongoing studies are mainly evaluating combined treatments and long acting form of the drug.