950 resultados para Visco-elastic dampers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow in our attempt to specify the location of the haemorrhagic spot, which, if located accurately, could possibly be operated leading to an instant cure. The model we employ for the purpose is basically fluid mechanical in origin and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an artery or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tooth enamel is the stiffest tissue in the human body with a well-organized microstructure. Developmental diseases, such as enamel hypomineralisation, have been reported to cause marked reduction in the elastic modulus of enamel and consequently impair dental function. We produce evidence, using site-specific transmission electron microscopy (TEM), of difference in microstructure between sound and hypomineralised enamel. Built upon that, we develop a mechanical model to explore the relationship of the elastic modulus of the mineral-protein composite structure of enamel with the thickness of protein layers and the direction of mechanical loading. We conclude that when subject to complex mechanical loading conditions, sound enamel exhibits consistently high stiffness, which is essential for dental function. A marked decrease in stiffness of hypomineralised enamel is caused primarily by an increase in the thickness of protein layers between apatite crystals and to a lesser extent by an increase in the effective crystal orientation angle. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal Mo3Si specimens were grown and tested at room temperature using established nanoindentation techniques at various crystallographic orientations. The indentation modulus and hardness were obtained for loads that were large enough to determine bulk properties, yet small enough to avoid cracking in the specimens. From the indentation modulus results, anisotropic elastic constants were determined. As load was initially increased to approximately 1.5 mN, the hardness exhibited a sudden drop that corresponded to a jump in displacement. The resolved shear stress that was determined from initial yielding was 10-15% of the shear modulus, but 3 to 4 times the value obtained from the bulk hardness. Non-contact atomic force microscopy images in the vicinity of indents revealed features consistent with {100}(010) slip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^