972 resultados para Venom specificity
Resumo:
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.
Resumo:
Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.
Resumo:
BACKGROUND: H1 antihistamines increase safety during allergen-specific immunotherapy and might influence the outcome because of immunoregulatory effects. OBJECTIVE: We sought to analyze the influence of 5 mg of levocetirizine (LC) on the safety, efficacy, and immunologic effects of ultrarush honeybee venom immunotherapy (BVIT). METHOD: In a double-blind, placebo-controlled study 54 patients with honeybee venom allergy received LC or placebo from 2 days before BVIT to day 21. Side effects during dose increase and systemic allergic reactions (SARs) to a sting challenge after 120 days were analyzed. Allergen-specific immune response was investigated in skin, serum, and allergen-stimulated T-cell cultures. RESULTS: Side effects were significantly more frequent in patients receiving placebo. Four patients receiving placebo dropped out because of side effects. SARs to the sting challenge occurred in 8 patients (6 in the LC group and 2 in the placebo group). Seven SARs were only cutaneous, and 1 in the placebo group was also respiratory. Difference of SARs caused by the sting challenge was insignificant. Specific IgG levels increased significantly in both groups. Major allergen phospholipase A(2)-stimulated T cells from both groups showed a slightly decreased proliferation. The decrease in IFN-gamma and IL-13 levels with placebo was not prominent with LC, whereas IL-10 levels showed a significant increase in the LC group only. Decreased histamine receptor (HR)1/HR2 ratio in allergen-specific T cells on day 21 in the placebo group was prevented by LC. CONCLUSIONS: LC reduces side effects during dose increase without influencing the efficacy of BVIT. LC modulates the natural course of allergen-specific immune response and affects the expression of HRs and cytokine production by allergen-specific T cells.
Resumo:
Antigenic cross-reactivity has been described between the venom allergen (antigen 5) and mammalian testis proteins. Based on an allergen database we have previously shown that allergens can be represented by allergen motifs. A motif group was found containing venom antigen 5 sequences from different vespids. Using an optimized amino acid profile based on antigen 5 sequences for searching cross-reactive proteins, three human semen proteins belonging to the family of cysteine-rich secretory proteins (hCRISP) were found in the Swiss Protein database. To analyze antigenic cross-reactivity between antigen 5 and hCRISPs, antigen 5 from yellow jacket venom (Ves v 5) and two hCRISPs (CRISP-2 and -3) were chosen and produced as recombinant proteins in E. coli. A correlation was found between antibodies reacting with rVes v 5 and rhCRISP-2, -3 in a small human sera population indicating the presence of cross-reactive antibodies in human serum. Using intravenous immunoglobulin (IVIg), a therapeutic multidonor IgG preparation, cross-reactive antibodies were isolated that recognize rVes v 5, hCRISP-2 and -3 suggesting the presence of common epitopes between Ves v 5 and hCRISPs. However this cross-reactivity seems not to be linked to allergy to wasp venom as we could show no correlation between increasing CAP-class IgE level to wasp venom and IgG to sperm extract and hCRISPs. These data suggest that higher sensitization to wasp venom does not induce more antibodies against autoantigens and might not represent a higher risk to develop autoantibodies leading to infertility.
Resumo:
This study investigated the anatomical consequences of a photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Retinae were examined 2 weeks, 1, 3, and 6 months after systemic IAA injection. The retinae were processed using standard histological methods to assess the gross morphology and topographical distribution of damage, and by immunohistochemistry to examine specific cell populations in the retina. Degeneration was restricted to the photoreceptors and was most common in the ventral retina and visual streak. In damaged regions, the outer nuclear layer was reduced in thickness or eliminated entirely, with a concomitant loss of immunoreactivity for rhodopsin. However, the magnitude of the effect varied between animals with the same IAA dose and survival time, suggesting individual differences in the bioavailability of the toxin. In all eyes, the inner retina remained intact, as judged by the thickness of the inner nuclear layer, and by the pattern of immunoreactivity for protein kinase C-alpha (rod bipolar cells) and calbindin D-28 (horizontal cells). Müller cell stalks became immunoreactive for glial fibrillary acidic protein (GFAP) even in IAA-treated retinae that had no signs of cell loss, indicating a response of the retina to the toxin. However, no marked hypertrophy or proliferation of Müller cells was observed with either GFAP or vimentin immunohistochemistry. Thus the selective, long lasting damage to the photoreceptors produced by this toxin did not lead to a reorganization of the surviving cells, at least with survival as long as 6 months, in contrast to the remodeling of the inner retina that is observed in inherited retinal degenerations such as retinitis pigmentosa and retinal injuries such as retinal detachment.
Resumo:
MicroRNAs (miRNAs) are an abundant class of 20-23-nt long regulators of gene expression. The study of miRNA function in mice and potential therapeutic approaches largely depend on modified oligonucleotides. We recently demonstrated silencing miRNA function in mice using chemically modified and cholesterol-conjugated RNAs termed 'antagomirs'. Here, we further characterize the properties and function of antagomirs in mice. We demonstrate that antagomirs harbor optimized phosphorothioate modifications, require >19-nt length for highest efficiency and can discriminate between single nucleotide mismatches of the targeted miRNA. Degradation of different chemically protected miRNA/antagomir duplexes in mouse livers and localization of antagomirs in a cytosolic compartment that is distinct from processing (P)-bodies indicates a degradation mechanism independent of the RNA interference (RNAi) pathway. Finally, we show that antagomirs, although incapable of silencing miRNAs in the central nervous system (CNS) when injected systemically, efficiently target miRNAs when injected locally into the mouse cortex. Our data further validate the effectiveness of antagomirs in vivo and should facilitate future studies to silence miRNAs for functional analysis and in clinically relevant settings.
Resumo:
BACKGROUND: beta(3)-Integrins are involved in platelet aggregation via alpha(IIb)beta(3) [glycoprotein (GP)IIb-GPIIIa], and in angiogenesis via endothelial alpha(V)beta(3). Cross-reactive ligands with antiaggregatory and proangiogenic effects, both desirable in peripheral vasculopathies, have not yet been described. OBJECTIVES: In vitro and in vivo characterization of antiaggregatory and proangiogenic effects of two recombinant human Fab fragments, with emphasis on beta(3)-integrins. METHODS: Recombinant Fab fragments were obtained by phage display technology. Specificity, affinity and IC(50) were determined by immunodot assays, enzyme-linked immunosorbent assay (ELISA), and Scatchard plot analysis, and by means of human umbilical vein endothelial cells (HUVECs). Functional analyses included ELISA for interaction with fibrinogen binding to GPIIb-GPIIIa, flow cytometry for measurement of activation parameters and competitive inhibition experiments, human platelet aggregometry, and proliferation, tube formation and the chorioallantoic membrane (CAM) assay for measurement of angiogenic effects. RESULTS: We observed specific and high-affinity binding to an intact GPIIb-GPIIIa receptor complex of two human Fab autoantibody fragments, with no platelet activation. Dose-dependent fibrinogen binding to GPIIb-GPIIIa and platelet aggregation were completely inhibited. One Fab fragment was competitively inhibited by abciximab and its murine analog monoclonal antibody (mAb) 7E3, whereas the other Fab fragment bound to cultured HUVECs, suggesting cross-reactivity with alpha(V)beta(3), and also demonstrated proangiogenic effects in tube formation and CAM assays. CONCLUSIONS: These Fab fragments are the first entirely human anti-GPIIb-GPIIIa Fab fragments with full antiaggregatory properties; furthermore, they do not activate platelets. The unique dual-specificity anti-beta(3)-integrin Fab fragment may represent a new tool for the study and management of peripheral arterial vasculopathies.
Resumo:
The aim of the study was to determine the sensitivity and specificity for typical abdominal injuries after major blunt trauma in postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI).
Resumo:
Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy.
Resumo:
BACKGROUND Anecdotal evidence suggests that the sensitivity and specificity of a diagnostic test may vary with disease prevalence. Our objective was to investigate the associations between disease prevalence and test sensitivity and specificity using studies of diagnostic accuracy. METHODS We used data from 23 meta-analyses, each of which included 10-39 studies (416 total). The median prevalence per review ranged from 1% to 77%. We evaluated the effects of prevalence on sensitivity and specificity using a bivariate random-effects model for each meta-analysis, with prevalence as a covariate. We estimated the overall effect of prevalence by pooling the effects using the inverse variance method. RESULTS Within a given review, a change in prevalence from the lowest to highest value resulted in a corresponding change in sensitivity or specificity from 0 to 40 percentage points. This effect was statistically significant (p < 0.05) for either sensitivity or specificity in 8 meta-analyses (35%). Overall, specificity tended to be lower with higher disease prevalence; there was no such systematic effect for sensitivity. INTERPRETATION The sensitivity and specificity of a test often vary with disease prevalence; this effect is likely to be the result of mechanisms, such as patient spectrum, that affect prevalence, sensitivity and specificity. Because it may be difficult to identify such mechanisms, clinicians should use prevalence as a guide when selecting studies that most closely match their situation.
Resumo:
Background & Aims: HLA-B⁄27 is associated with spontaneous HCV genotype 1 clearance. HLA-B⁄27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B⁄27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B⁄27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Methods: Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B⁄27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B⁄27:02 and 05. Results: The NS5B2820 epitope is only restricted by the HLA-B⁄27 subtype HLA-B⁄27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B⁄27 subtype B⁄27:05. Indeed, the epitope is very dominant in HLA-B⁄27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B⁄27:02+ chronically infected patients. Conclusions: The NS5B2820 epitope is immunodominant in the context of HLA-B⁄27:02, but is not restricted by other HLA-B⁄27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines.
Resumo:
Cupiennins are small cationic a-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.