903 resultados para Vegetatively Incompatible Biotypes
Resumo:
Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 × 10−10 cm2/s. A coefficient only slightly larger (7.1 × 10−10 cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.
Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco
Resumo:
Salicylic acid (SA) plays an important role in signaling the activation of plant defense responses against pathogen attack including induction of pathogenesis-related (PR) proteins. To gain further insight into the SA-mediated signal transduction pathway, we have isolated and characterized a tobacco mosaic virus (TMV)-inducible myb oncogene homolog (myb1) from tobacco. The myb1 gene was induced upon TMV infection during both the hypersensitive response and development of systemic acquired resistance in the resistant tobacco cultivar following the rise of endogenous SA, but was not activated in the susceptible cultivar that fails to accumulate SA. The myb1 gene was also induced by incompatible bacterial pathogen Pseudomonas syringae pv. syringae during the hypersensitive response. Exogenous SA treatment rapidly (within 15 min) activated the expression of myb1 in both resistant and susceptible tobacco cultivars with the subsequent induction of PR genes occurring several hours later. Biologically active analogs of SA and 2,6-dichloroisonicotinic acid (a synthetic functional analog of SA), which induce PR genes and enhanced resistance, also activated the myb1 gene. In contrast, biologically inactive analogs were poor inducers of myb1 gene expression. Furthermore, the recombinant Myb1 protein was shown to specifically bind to a Myb-binding consensus sequence found in the promoter of the PR-1a gene. Taken together, these results suggest that the tobacco myb1 gene encodes a signaling component downstream of SA that may participate in transcriptional activation of PR genes and plant disease resistance.
Resumo:
Exon/intron architecture varies across the eukaryotic kingdom with large introns and small exons the rule in vertebrates and the opposite in lower eukaryotes. To investigate the relationship between exon and intron size in pre-mRNA processing, internally expanded exons were placed in vertebrate genes with small and large introns. Both exon and intron size influenced splicing phenotype. Intron size dictated if large exons were efficiently recognized. When introns were large, large exons were skipped; when introns were small, the same large exons were included. Thus, large exons were incompatible for splicing if and only if they were flanked by large introns. Both intron and exon size became problematic at ≈500 nt, although both exon and intron sequence influenced the size at which exons and introns failed to be recognized. These results indicate that present-day gene architecture reflects at least in part limitations on exon recognition. Furthermore, these results strengthen models that invoke pairing of splice sites during recognition of pre-mRNAs, and suggest that vertebrate consensus sequences support pairing across either introns or exons.
Resumo:
Transpositions of mtDNA sequences to the nuclear genome have been documented in a wide variety of individual taxa, but little is known about their taxonomic frequency or patterns of variation. We provide evidence of nuclear sequences homologous to the mtDNA control region in seven species of diving ducks (tribe Aythyini). Phylogenetic analysis places each nuclear sequence as a close relative of the mtDNA haplotypes of the specie(s) in which it occurs, indicating that they derive from six independent transposition events, all occurring within the last ≈1.5 million years. Relative-rate tests and comparison of intraspecific variation in nuclear and mtDNA sequences confirm the expectation of a greatly reduced rate of evolution in the nuclear copies. By representing mtDNA haplotypes from ancestral populations, nuclear insertions may be valuable in some phylogenetic analyses, but they also confound the accurate determination of mtDNA sequences. In particular, our data suggest that the presumably nonfunctional but more slowly evolving nuclear sequences often will not be identifiable by changes incompatible with function and may be preferentially amplified by PCR primers based on mtDNA sequences from related taxa.
Resumo:
Hyaluronan (HA), a large glycosaminoglycan abundant in the extracellular matrix, is important in cell migration during embryonic development, cellular proliferation, and differentiation and has a structural role in connective tissues. The turnover of HA requires endoglycosidic breakdown by lysosomal hyaluronidase, and a congenital deficiency of hyaluronidase has been thought to be incompatible with life. However, a patient with a deficiency of serum hyaluronidase, now designated as mucopolysaccharidosis IX, was recently described. This patient had a surprisingly mild clinical phenotype, including notable periarticular soft tissue masses, mild short stature, an absence of neurological or visceral involvement, and histological and ultrastructural evidence of a lysosomal storage disease. To determine the molecular basis of mucopolysaccharidosis IX, we analyzed two candidate genes tandemly distributed on human chromosome 3p21.3 and encoding proteins with homology to a sperm protein with hyaluronidase activity. These genes, HYAL1 and HYAL2, encode two distinct lysosomal hyaluronidases with different substrate specificities. We identified two mutations in the HYAL1 alleles of the patient, a 1412G → A mutation that introduces a nonconservative amino acid substitution (Glu268Lys) in a putative active site residue and a complex intragenic rearrangement, 1361del37ins14, that results in a premature termination codon. We further show that these two hyaluronidase genes, as well as a third recently discovered adjacent hyaluronidase gene, HYAL3, have markedly different tissue expression patterns, consistent with differing roles in HA metabolism. These data provide an explanation for the unexpectedly mild phenotype in mucopolysaccharidosis IX and predict the existence of other hyaluronidase deficiency disorders.
Resumo:
Although 1–24% of T cells are alloreactive, i.e., respond to MHC molecules encoded by a foreign haplotype, it is generally believed that T cells cannot recognize foreign peptides binding foreign MHC molecules. We show using a quantitative model that, if T cell selection and activation are affinity-driven, then an alloreactivity of 1–24% is incompatible with the textbook notion that self MHC restriction is absolute. If an average of 1% of clones are alloreactive, then according to our model, at most 20-fold more clones should, on average, be activated by antigens presented on self MHC than by antigens presented on foreign MHC. This ratio is at best 5 if alloreactivity is 5%. These results describe average properties of the murine immune system, but not the outcome of individual experiments. Using supercomputer technology, we simulated 100,000 MHC restriction experiments. Although the average restriction ratio was 7.1, restriction was absolute in 10% of the simulated experiments, greater than 100, although not absolute, in 29%, and below 6 in 24%. This extreme variability agrees with experimental estimates. Our analysis suggests that alloreactivity and average self MHC restriction both cannot be high, but that a low average restriction level is compatible with high levels in a significant number of experiments.
Resumo:
Transduction-channel gating by hair cells apparently requires a gating spring, an elastic element that transmits force to the channels. To determine whether the gating spring is the tip link, a filament interconnecting two stereocilia along the axis of mechanical sensitivity, we examined the tip link's structure at high resolution by using rapid-freeze, deep-etch electron microscopy. We found that the tip link is a right-handed, coiled double filament that usually forks into two branches before contacting a taller stereocilium; at the other end, several short filaments extend to the tip link from the shorter stereocilium. The structure of the tip link suggests that it is either a helical polymer or a braided pair of filamentous macromolecules and is thus likely to be relatively stiff and inextensible. Such behavior is incompatible with the measured elasticity of the gating spring, suggesting that the gating spring instead lies in series with the helical segment of the tip link.
Resumo:
We have reported some type II restriction-modification (RM) gene complexes on plasmids resist displacement by an incompatible plasmid through postsegregational host killing. Such selfish behavior may have contributed to the spread and maintenance of RM systems. Here we analyze the role of regulatory genes (C), often found linked to RM gene complexes, in their interaction with the host and the other RM gene complexes. We identified the C gene of EcoRV as a positive regulator of restriction. A C mutation eliminated postsegregational killing by EcoRV. The C system has been proposed to allow establishment of RM systems in new hosts by delaying the appearance of restriction activity. Consistent with this proposal, bacteria preexpressing ecoRVC were transformed at a reduced efficiency by plasmids carrying the EcoRV RM gene complex. Cells carrying the BamHI RM gene complex were transformed at a reduced efficiency by a plasmid carrying a PvuII RM gene complex, which shares the same C specificity. The reduction most likely was caused by chromosome cleavage at unmodified PvuII sites by prematurely expressed PvuII restriction enzyme. Therefore, association of the C genes of the same specificity with RM gene complexes of different sequence specificities can confer on a resident RM gene complex the capacity to abort establishment of a second, incoming RM gene complex. This phenomenon, termed “apoptotic mutual exclusion,” is reminiscent of suicidal defense against virus infection programmed by other selfish elements. pvuIIC and bamHIC genes define one incompatibility group of exclusion whereas ecoRVC gene defines another.
Resumo:
Previous studies have suggested that ionizing radiation causes irreparable DNA double-strand breaks in mice and cell lines harboring mutations in any of the three subunits of DNA-dependent protein kinase (DNA-PK) (the catalytic subunit, DNA-PKcs, or one of the DNA-binding subunits, Ku70 or Ku86). In actuality, these mutants vary in their ability to resolve double-strand breaks generated during variable (diversity) joining [V(D)J] recombination. Mutant cell lines and mice with targeted deletions in Ku70 or Ku86 are severely compromised in their ability to form coding and signal joints, the products of V(D)J recombination. It is noteworthy, however, that severe combined immunodeficient (SCID) mice, which bear a nonnull mutation in DNA-PKcs, are substantially less impaired in forming signal joints than coding joints. The current view holds that the defective protein encoded by the murine SCID allele retains enough residual function to support signal joint formation. An alternative hypothesis proposes that DNA-PKcs and Ku perform different roles in V(D)J recombination, with DNA-PKcs required only for coding joint formation. To resolve this issue, we examined V(D)J recombination in DNA-PKcs-deficient (SLIP) mice. We found that the effects of this mutation on coding and signal joint formation are identical to the effects of the SCID mutation. Signal joints are formed at levels 10-fold lower than in wild type, and one-half of these joints are aberrant. These data are incompatible with the notion that signal joint formation in SCID mice results from residual DNA-PKcs function, and suggest a third possibility: that DNA-PKcs normally plays an important but nonessential role in signal joint formation.
Resumo:
In higher eukaryotes, translation of some mRNAs occurs by internal initiation. It is not known, however, whether this mechanism is used to initiate the translation of any yeast mRNAs. In this report, we identify naturally occurring nucleotide sequences that function as internal ribosome entry sites (IRESes) within the 5′ leader sequences of Saccharomyces cerevisiae YAP1 and p150 mRNAs. When tested in the 5′ untranslated regions of monocistronic reporter genes, both leader sequences enhanced translation efficiency in vegetatively growing yeast cells. Moreover, when tested in the intercistronic region of dicistronic mRNAs, both sequences were shown to contain IRESes that functioned in living cells. The activity of the p150 leader was much greater than that of the YAP1 leader. The second cistron was not expressed in control dicistronic constructs that lacked these sequences or contained the 5′ leader sequence of the CLN3 mRNA in the intercistronic region. Further analyses of the p150 IRES revealed that it contained several nonoverlapping segments that were able independently to mediate internal initiation. These results suggested a modular composition for the p150 IRES that resembled the composition of IRESes contained within some cellular mRNAs of higher eukaryotes. Both YAP1 and p150 leaders contain several complementary sequence matches to yeast 18S rRNA. The findings are discussed in terms of our understanding of internal initiation in higher eukaryotes.
Resumo:
Although a vast amount of life sciences data is generated in the form of images, most scientists still store images on extremely diverse and often incompatible storage media, without any type of metadata structure, and thus with no standard facility with which to conduct searches or analyses. Here we present a solution to unlock the value of scientific images. The Global Image Database (GID) is a web-based (http://www.g wer.ch/qv/gid/gid.htm) structured central repository for scientific annotated images. The GID was designed to manage images from a wide spectrum of imaging domains ranging from microscopy to automated screening. The annotations in the GID define the source experiment of the images by describing who the authors of the experiment are, when the images were created, the biological origin of the experimental sample and how the sample was processed for visualization. A collection of experimental imaging protocols provides details of the sample preparation, and labeling, or visualization procedures. In addition, the entries in the GID reference these imaging protocols with the probe sequences or antibody names used in labeling experiments. The GID annotations are searchable by field or globally. The query results are first shown as image thumbnail previews, enabling quick browsing prior to original-sized annotated image retrieval. The development of the GID continues, aiming at facilitating the management and exchange of image data in the scientific community, and at creating new query tools for mining image data.
Resumo:
The presence of magnetite crystal chains, considered missing evidence for the biological origin of magnetite in ALH84001 [Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., Clemett, S. J., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr., & Romanek, C. S. (2000) Geochim. Cosmochim. Acta 64, 4049–4081], is demonstrated by high-power stereo backscattered scanning electron microscopy. Five characteristics of such chains (uniform crystal size and shape within chains, gaps between crystals, orientation of elongated crystals along the chain axis, flexibility of chains, and a halo that is a possible remnant of a membrane around chains), observed or inferred to be present in magnetotactic bacteria but incompatible with a nonbiological origin, are shown to be present. Although it is unlikely that magnetotactic bacteria were ever alive in ALH84001, decomposed remains of such organisms could have been deposited in cracks in the rock while it was still on the surface on Mars.
Resumo:
The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20+ is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20+ gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.
Resumo:
We tested the ability of 87 profilin point mutations to complement temperature-sensitive and null mutations of the single profilin gene of the fission yeast Schizosaccharomyces pombe. We compared the biochemical properties of 13 stable noncomplementing profilins with an equal number of complementing profilin mutants. A large quantitative database revealed the following: 1) in a profilin null background fission yeast grow normally with profilin mutations having >10% of wild-type affinity for actin or poly-l-proline, but lower affinity for either ligand is incompatible with life; 2) in the cdc3-124 profilin ts background, fission yeast function with profilin having only 2–5% wild-type affinity for actin or poly-l-proline; and 3) special mutations show that the ability of profilin to catalyze nucleotide exchange by actin is an essential function. Thus, poly-l-proline binding, actin binding, and actin nucleotide exchange are each independent requirements for profilin function in fission yeast.
Resumo:
Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.