940 resultados para VIRAL REPLICATION
Resumo:
Many biotic and abiotic factors affect the persistence and activity of beneficial pseudomonads introduced into soil to suppress plant diseases. One such factor may be the presence of virulent bacteriophages that decimate the population of the introduced bacteria, thereby reducing their beneficial effect. We have isolated a lytic bacteriophage (phi)GP100) that specifically infects the biocontrol bacterium Pseudomonas fluorescens CHA0 and some closely related Pseudomonas strains. phiGP100 was found to be a double-stranded-DNA phage with an icosahedral head, a stubby tail, and a genome size of approximately 50 kb. Replication of phiGP100 was negatively affected at temperatures higher than 25 degrees C. phiGP100 had a negative impact on the population size and the biocontrol activity of P. fluorescens strain CHA0-Rif (a rifampicin-resistant variant of CHA0) in natural soil microcosms. In the presence of phiGP100, the population size of strain CHA0-Rif in soil and on cucumber roots was reduced more than 100-fold. As a consequence, the bacterium's capacity to protect cucumber against a root disease caused by the pathogenic oomycete Pythium ultimum was entirely abolished. In contrast, the phage affected neither root colonization and nor the disease suppressive effect of a phiDGP100-resistant variant of strain CHA0-Rif. To our knowledge, this study is the first to illustrate the potential of phages to impair biocontrol performance of beneficial bacteria released into the natural soil environment.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) is one of the candidate molecules among neurotrophic factors proposed for a potential treatment of retinitis pigmentosa (RP). It must be administered repeatedly or through sustained releasing systems to exert prolonged neuroprotective effects. In the dystrophic Royal College of Surgeon's (RCS) rat model of RP, we found that endogenous GDNF levels dropped during retinal degeneration time course, opening a therapeutic window for GDNF supplementation. We showed that after a single electrotransfer of 30 μg of GDNF-encoding plasmid in the rat ciliary muscle, GDNF was produced for at least 7 months. Morphometric, electroretinographic and optokinetic analyses highlighted that this continuous release of GDNF delayed photoreceptors (PRs) as well as retinal functions loss until at least 70 days of age in RCS rats. Unexpectedly, increasing the GDNF secretion level accelerated PR degeneration and the loss of electrophysiological responses. This is the first report: (i) demonstrating the efficacy of GDNF delivery through non-viral gene therapy in RP; (ii) establishing the efficacy of intravitreal administration of GDNF in RP associated with a mutation in the retinal pigment epithelium; and (iii) warning against potential toxic effects of GDNF within the eye/retina.
Resumo:
It has been shown previously that CD8beta in vitro increases the range and the sensitivity of antigen recognition and in vivo plays an important role in the thymic selection of CD8+ T cells. Consistent with this, we report here that CD8+ T cells from CD8beta knockout (KO) P14 TCR transgenic mice proliferate inefficiently in vitro. In contrast to these findings, we also show that CD8beta KO mice mount normal CD8 primary, secondary and memory responses to acute infection with lymphocytic choriomeningitis virus. Tetramer staining and cytotoxic experiments revealed a predominance of CD8-independent CTL in CD8beta KO mice. The TCR repertoire, especially the one of the TCRalpha chain, was different in CD8beta KO mice as compared with B6 mice. Our results indicate that in the absence of CD8beta, CD8-independent TCRs are preferentially selected, which in vivo effectively compensates for the reduced co-receptor function of CD8alphaalpha.
Resumo:
Some viruses are transmitted only in specific parts of the world and do not exist in Switzerland. However, the increase in intercontinental travels, the tendency of travelers to have activities in remote rural areas, the transportation (sometimes forbidden) of exotic animals, the climatic warming and the adaptation of viruses to new vectors produce an extension of viral diseases towards Northern countries. To improve the identification of these infections in travelers, but also in European autochthonous populations, it is necessary to know the clinical characteristics and the websites announcing the epidemics. Neurological or hemorrhagic signs should incite the clinician to suspect a viral hemorrhagic fever, diagnosis to be considered if the destination and chronology are compatible, strict isolation measures being necessary.
Resumo:
Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma "backpack tumor" model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.
Resumo:
BACKGROUND: Cytomegalovirus (CMV), human herpesvirus-6 and -7 (HHV-6 and -7) are beta-herpesviruses that commonly reactivate and have been proposed to trigger acute rejection and chronic allograft injury. We assessed the contribution of these viruses in the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. METHODS: Quantitative real-time polymerase chain reaction of bronchoalveolar lavage samples were performed for CMV, HHV-6 and -7 in a prospective cohort of lung transplant recipients. A time-dependent Cox regression analysis was used to correlate the risk of BOS and acute rejection in patients with and without beta-herpesviruses infection. RESULTS: Ninety-three patients were included in the study over a period of 3 years. A total of 581 samples from bronchoalveolar lavage were obtained. Sixty-one patients (65.6%) had at least one positive result for one of the beta-herpesviruses: 48 patients (51.6%) for CMV and 19 patients (20.4%) for both HHV-6 and -7. Median peak viral load was 3419 copies/mL for CMV, 258 copies/mL for HHV-6, and 665 copies/mL for HHV-7. Acute rejection (>or=grade 2) occurred in 46.2% and BOS (>or=stage 1) in 19.4% of the patients. In the Cox regression model the relative risk of acute rejection or BOS was not increased in patients with any beta-herpesviruses reactivation. Acute rejection was the only independently associated risk factor for BOS. CONCLUSIONS: In lung transplant recipients receiving prolonged antiviral prophylaxis, reactivation of beta-herpesviruses within the allograft was common. However, despite high viral loads in many patients, virus replication was not associated with the development of rejection or BOS.
Resumo:
The Papaya ringspot virus (PRSV) coat protein transgene present in 'Rainbow' and 'SunUp' papayas disclose high sequence similarity (>89%) to the cp gene from PRSV BR and TH. Despite this, both isolates are able to break down the resistance in 'Rainbow', while only the latter is able to do so in 'SunUp'. The objective of this work was to evaluate the degree of sequence similarity between the cp gene in the challenge isolate and the cp transgene in transgenic papayas resistant to PRSV. The production of a hybrid virus containing the genome backbone of PRSV HA up to the Apa I site in the NIb gene, and downstream from there, the sequence of PRSV TH was undertaken. This hybrid virus, PRSV HA/TH, was obtained and used to challenge 'Rainbow', 'SunUp', and an R2 population derived from line 63-1, all resistant to PRSV HA. PRSV HA/TH broke down the resistance in both papaya varieties and in the 63-1 population, demonstrating that sequence similarity is a major factor in the mechanism of resistance used by transgenic papayas expressing the cp gene. A comparative analysis of the cp gene present in line 55-1 and 63-1-derived transgenic plants and in PRSV HA, BR, and TH was also performed.
Resumo:
BACKGROUND: Nucleoside reverse transcriptase inhibitors (NRTIs) are often administered in salvage therapy even if genotypic resistance tests (GRTs) indicate high-level resistance, but little is known about the benefit of these additional NRTIs. METHODS: The effect of <2 compared with 2 NRTIs on viral suppression (HIV-1 RNA < 50 copies/mL) at week 24 was studied in salvage patients receiving raltegravir. Intent-to-treat and per-protocol analyses were performed; last observation carried forward imputation was used to deal with missing information. Logistic regressions were weighted to create a pseudopopulation in which the probability of receiving <2 and 2 NRTIs was unrelated to baseline factors predicting treatment response. RESULTS: One-hundred thirty patients were included, of whom 58.5% (n = 76) received <2 NRTIs. NRTIs were often replaced by other drug classes. Patients with 2 NRTIs received less additional drug classes compared with patients with <2 NRTIs [median (IQR): 1 (1-2) compared with 2 (1-2), P Wilcoxon < 0.001]. The activity of non-NRTI treatment components was lower in the 2 NRTIs group compared with the <2 NRTIs group [median (IQR) genotypic sensitivity score: 2 (1.5-2.5) compared with 2.5 (2-3), P Wilcoxon < 0.001]. The administration of <2 NRTIs was associated with a worse viral suppression rate at week 24. The odds ratios were 0.34 (95% confidence interval: 0.13 to 0.89, P = 0.027) and 0.19 (95% confidence interval: 0.05 to 0.79, P = 0.023) when performing the last observation carried forward and the per-protocol approach, respectively. CONCLUSIONS: Our findings showed that partially active or inactive NRTIs contribute to treatment response, and thus the use of 2 NRTIs in salvage regimens that include raltegravir seems warranted.
Resumo:
Leishmania parasites have been plaguing humankind for centuries as a range of skin diseases named the cutaneous leishmaniases (CL). Carried in a hematophagous sand fly, Leishmania usually infests the skin surrounding the bite site, causing a destructive immune response that may persist for months or even years. The various symptomatic outcomes of CL range from a benevolent self- healing reddened bump to extensive open ulcerations, resistant to treatment and resulting in life- changing disfiguration. Many of these more aggressive outcomes are geographically isolated within the habitats of certain Neotropical Leishmania species; where about 15% of cases experience metastatic complications. However, despite this correlation, genetic analysis has revealed no major differences between species causing the various disease forms. We have recently identified a cytoplasmic dsRNA virus within metastatic L. guyanensis parasites that acts as a potent innate immunogen capable of worsening lesionai inflammation and prolonging parasite survival. The dsRNA genome of Leishmania RNA virus (LRV) binds and stimulates Toll-Like-Receptor-3 (TLR3), inducing this destructive inflammation, which we speculate as a factor contributing to the development of metastatic disease. This thesis establishes the first experimental model of LRV-mediated leishmanial metastasis and investigates the role of non-TLR3 viral recognition pathways in LRV-mediated pathology. Viral dsRNA can be detected by various non-TLR3 pattern recognition receptors (PRR); two such PRR groups are the RLRs (Retinoic acid-inducible gene 1 like receptors) and the NLRs (nucleotide- binding domain, leucine-rich repeat containing receptors). The RLRs are designed to detect viral dsRNA in the cytoplasm, while the NLRs react to molecular "danger" signals of cell damage, often oligomerizing into molecular scaffolds called "inflammasomes" that activate a potent inflammatory cascade. Interestingly, we found that neither RLR signalling nor the inflammasome pathway had an effect on LRV-mediated pathology. In contrast, we found a dramatic inflammasome independent effect for the NLR family member, NLRP10, where a knockout mouse model showed little evidence of disease. This phenotype was mimicked in an NLR knockout with which NLRP10 is known to interact: NLRC2. As this pathway induces the chronic inflammatory cell lineage TH17, we investigated the role of its key chronic inflammatory cytokine, IL-17A, in human patients infected by L. guyanensis. Indeed, patients infected with LRV+ parasites had a significantly increased level of IL-17A in lesionai biopsies. Interestingly, LRV presence was also associated with a significant decrease in the correlate of protection, IFN-y. This association was repeated in our murine model, where after we were able to establish the first experimental model of LRV-dependent leishmanial metastasis, which was mediated by IL-17A in the absence of IFN-y. Finally, we tested a new inhibitor of IL-17A secretion, SR1001, and reveal its potential as a Prophylactic immunomodulator and potent parasitotoxic drug. Taken together, these findings provide a basis for anti-IL-17A as a feasible therapeutic intervention to prevent and treat the metastatic complications of cutaneous leishmaniasis. -- Les parasites Leishmania infectent l'homme depuis des siècles causant des affections cutanées, appelées leishmanioses cutanées (LC). Le parasite est transmis par la mouche des sables et réside dans le derme à l'endroit de la piqûre. Au niveau de la peau, le parasite provoque une réponse immunitaire destructrice qui peut persister pendant des mois voire des années. Les symptômes de LC vont d'une simple enflure qui guérit spontanément jusqu' à de vastes ulcérations ouvertes, résistantes aux traitements. Des manifestations plus agressives sont déterminées par les habitats géographiques de certaines espèces de Leishmania. Dans ces cas, environ 15% des patients développent des lésions métastatiques. Aucun «facteur métastatique» n'a encore été trouvé à ce jour dans ces espèces. Récemment, nous avons pu identifier un virus résidant dans certains parasites métastatiques présents en Guyane française (appelé Leishmania-virus, ou LV) et qui confère un avantage de survie à son hôte parasitaire. Ce virus active fortement la réponse inflammatoire, aggravant l'inflammation et prolongeant l'infection parasitaire. Afin de diagnostiquer, prévenir et traiter ces lésions, nous nous sommes intéressés à identifier les composants de la voie de signalisation anti-virale, responsables de la persistance de cette inflammation. Cette étude décrit le premier modèle expérimental de métastases de la leishmaniose induites par LV, et identifie plusieurs composants de la voie inflammatoire anti-virale qui facilite la pathologie métastatique. Contrairement à l'homme, les souris de laboratoire infectées par des Leishmania métastatiques (contenant LV, LV+) ne développent pas de lésions métastatiques et guérissent après quelques semaines d'infection. Après avoir analysé un groupe de patients atteints de leishmaniose en Guyane française, nous avons constaté que les personnes infectées avec les parasites métastatiques LV+ avaient des niveaux significativement plus faibles d'un composant immunitaire protecteur important, appelé l'interféron (IFN)-y. En utilisant des souris génétiquement modifiées, incapables de produire de l'IFN-y, nous avons observé de telles métastases. Après inoculation dans le coussinet plantaire de souris IFN-y7" avec des parasites LV+ ou LV-, nous avons démontré que seules les souris infectées avec des leishmanies ayant LV développent de multiples lésions secondaires sur la queue. Comme nous l'avons observé chez l'homme, ces souris sécrètent une quantité significativement élevée d'un composant inflammatoire destructeur, l'interleukine (IL)-17. IL-17 a été incriminée pour son rôle dans de nombreuses maladies inflammatoires chroniques. On a ainsi trouvé un rôle destructif similaire pour l'IL-17 dans la leishmaniose métastatique. Nous avons confirmé ce rôle en abrogeant IL-17 dans des souris IFN-y7- ce qui ralentit l'apparition des métastases. Nous pouvons donc conclure que les métastases de la leishmaniose sont induites par l'IL-17 en absence d'IFN-v. En analysant plus en détails les voies de signalisation anti-virale induites par LV, nous avons pu exclure d'autres voies d'activation de la réponse inflammatoire. Nous avons ainsi démontré que la signalisation par LV est indépendante de la signalisation inflammatoire de type « inflammasome ». En revanche, nous avons pu y lier plusieurs autres molécules, telles que NLRP10 et NLRC2, connues pour leur synergie avec les réponses inflammatoires. Cette nouvelle voie pourrait être la cible pour des médicaments inhibant l'inflammation. En effet, un nouveau médicament qui bloque la production d'IL-17 chez la souris s'est montré prometteur dans notre modèle : il a réduit le gonflement des lésions ainsi que la charge parasitaire, indiquant que la voie anti-virale /inflammatoire est une approche thérapeutique possible pour prévenir et traiter cette infection négligée.
Resumo:
Previous studies have associated activating Killer cell Immunoglobulin-like Receptor (KIR) genes with protection from cytomegalovirus (CMV) replication after organ transplantation. Whether KIR-associated protection is operating in the context of primary infection, re-activation, or both, remains unknown. Here we correlated KIR genotype and CMV serostatus at the time of transplantation with rates of CMV viremia in 517 heart (n=57), kidney (n=223), liver (n=165) or lung (n=72) allograft recipients reported to the Swiss Transplant Cohort Study. Across the entire cohort we found B haplotypes-which in contrast to A haplotypes may contain multiple activating KIR genes-to be protective in the most immunosuppressed patients (receiving anti-thymocyte globulin induction and intensive maintenance immunosuppression) (hazard ratio after adjustment for covariates 0.46, 95% confidence interval 0.29-0.75, P=0.002). Notably, a significant protection was detected only in recipients who were CMV-seropositive at the time of transplantation (HR 0.45, 95% CI 0.26-0.77, P=0.004), but not in CMV seronegative recipients (HR 0.59, 95% CI 0.22-1.53, P=0.28). These data indicate a prominent role for KIR-and presumably natural killer (NK) cells-in the control of CMV replication in CMV seropositive organ transplant recipients treated with intense immunosuppression.
Resumo:
OBJECTIVE: To evaluate the dynamic properties of the horizontal vestibulo-ocular reflex (h-VOR) in the acute stage of two common labyrinthine diseases that provoke severe attacks of vertigo with spontaneous nystagmus: vestibular neuritis (vestibular loss alone) and viral labyrinthitis (cochleovestibular loss). MATERIAL AND METHODS: Sixty-three patients were investigated: 42 were diagnosed with vestibular neuritis and 21 with viral labyrinthitis. The h-VOR function was evaluated by conventional caloric and impulsive testing. A simplified model of vestibular function was used to analyze the vestibulo-ocular response to rotational stimulation. RESULTS: The results showed a significant difference in h-VOR characteristics between the two pathologies. Patients with vestibular neuritis exhibited a strong horizontal semicircular canal deficit, but no h-VOR asymmetry between the two rotational directions. In contrast, patients with viral labyrinthitis demonstrated moderate canal paresis and a marked h-VOR deficit in rotation toward the affected ear. CONCLUSION: These findings support the hypothesis that the h-VOR dynamic asymmetry that occurs after an acute unilateral inner ear lesion is not due to canal dysfunction alone, but involves complex adaptive changes in the central VOR that may implicate the otolith system. Based on histopathologic and clinical differences in the two pathologies reported in the literature, we postulate that this otolith-canal interaction is mainly linked to the loss of saccular function.
Resumo:
Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
Viruses are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atmospheres. In this paper we investigate the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent to their discrete and polyhedral nature. We calculate the distribution of stress in these capsids and analyze their response to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity). We compare our results with appropriate generalizations of classical (i.e., continuum) elasticity theory. We also examine competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed.