962 resultados para Urban ecology
Resumo:
This article presents an overview of pedestrian environment in Kathmandu, Nepal to briefly discuss some of the emerging problems. It argues that pedestrian ranks lowest in the food chain of Kathmandu's urban jungle as there is too little concern shown by the government agencies in improving the quality of the street space for walkers.
Resumo:
This comprehensive study aimed to determine the sources and driving factors of organic carbon (OC) and elemental carbon (EC) concentrations in ambient PM2.5 in urban schools. Sampling was conducted outdoors at 25 schools in the Brisbane Metropolitan Area, Australia. Concentrations of primary and secondary OC were quantified using the EC tracer method, with secondary OC accounting for an average of 60%. Principal component analysis distinguished the contributing sources above the background and identified groups of schools with differing levels of primary and secondary carbonaceous aerosols. Overall, the results showed that vehicle emissions, local weather conditions and secondary organic aerosols (SOA) were the key factors influencing concentrations of carbonaceous component of PM2.5 at these schools. These results provide insights into children’s exposure to vehicle emissions and SOA at such urban schools.
Resumo:
Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA- APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemical composition of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition (particles above 50 nm in vacuum aerodynamic diameter) and PNSD (particles within 9-414 nm in mobility diameter), respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two of the sites. The NPF events happened on relatively warmer days with lower condensation sink (CS). Temporal percent fractions of organics increased after the particles grew enough to have a significant contribution to particles volume, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. K-means cluster analysis was performed on f44 vs f43 data and it was found that they follow different patterns on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be potentially used as a tool for source apportionment of measured particles.
Resumo:
The genus Asparagus includes at least six invasive species in Australia. Asparagus aethiopicus and A. africanus are invasive in subtropical Australia, and a third species, A. virgatus is naturalized and demonstrates localized spread in south east Queensland. To better understand how the attributes of these species contribute to their invasiveness, we compared fruit and seed traits, germination, seedling emergence, seed survival, and time-to-maturity. We further investigated dispersal ecology of A. africanus, examining the diet of a local frugivore, the figbird (Sphecotheres viridis) and the effect of gut passage on seedling emergence. Overall, A. aethiopicus was superior in germination and emergence, with the highest mean germination (98.8%) and emergence (94.5%) under optimal conditions and higher emergence (mean of 73.3%) across all treatments. In contrast, A. africanus had the lowest germination under optimal conditions (71.7%) and low mean seedling emergence (49.5%), but had fruits with the highest relative yield (ratio of dry pulp to fruit fresh weight) that were favored by a local frugivore. Figbirds consumed large numbers of A. africanus fruits (~30% of all non-Ficus fruits), and seedling germination was not significantly affected by gut passage compared to unprocessed fruits. Asparagus virgatus germinated poorly under cool, light conditions (1.4%) despite a high optimum mean (95.0%) and had low mean performance across emergence treatments (36.3%). The species also had fruits with a low pulp return for frugivores. For all species, seed survival declined rapidly in the first 12 mo and fell to < 3.2% viability at 36 mo. On the basis of the traits considered, A. virgatus is unlikely to have the invasive potential of its congeners. Uniformly short seed survival times suggest that weed managers do not have to contend with a substantial persistent soil-stored seed bank, but frugivore-mediated dispersal beyond existing infestations will present a considerable management challenge.
Resumo:
This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.
Resumo:
Purpose This review assessed the effectiveness of diabetic retinopathy (DR) screening programs, using retinal photography in Australian urban and rural settings, and considered implications for public health strategy and policy. Methods An electronic search of MEDLINE, PubMed, and Embase for studies published between 1 January 1996 and the 30 June 2013 was undertaken. Key search terms were “diabetic retinopathy,” “screening,” “retinal photography” and “Australia.” Results Twelve peer-reviewed publications were identified. The 14 DR screening programs identified from the 12 publications were successfully undertaken in urban, rural and remote communities across Australia. Locations included a pathology collection center, and Indigenous primary health care and Aboriginal community controlled organizations. Each intervention using retinal photography was highly effective at increasing the number of people who underwent screening for DR. The review identified that prior to commencement of the screening programs a median of 48% (range 16–85%) of those screened had not undergone a retinal examination within the recommended time frame (every year for Indigenous people and every 2 years for non-Indigenous people in Australia). A median of 16% (range 0–45%) of study participants had evidence of DR. Conclusions This review has shown there have been many pilot and demonstration projects in rural and urban Australia that confirm the effectiveness of retinal photography-based screening for DR
Resumo:
Only three of the 11 species in the genus Zoysia Willd. have thus far contributed to commercially available turfgrass varieties. One of the neglected taxa is Z. macrantha Desv., an Australian native species further divided into two subspecies. The coarser Z. macrantha subsp. macrantha occurs on sand dunes, headlands and tidal areas along eastern and southeastern coasts from about 23 to 38°S latitude. The shorter, denser-growing Z. macrantha subsp. walshii M.E. Nightingale is found on the southern mainland (South Australia and Victoria from longitude 137° to 148°E and at latitudes higher than 36°S), adjacent offshore islands, and northern, eastern and central Tasmania to 43°S growing on the edges of coastal, sub-coastal and even inland salt lakes, in riverine environments, and from moist grassy depressions (both coastal and inland) to rocky headlands. The latter subspecies has the more discontinuous and specialised distribution, largely determined by the need for an appropriate level of peat, clay or silt in the soil to maintain adequate moisture during the dry summers in southern Australia while at the same time avoiding anything more than temporary waterlogging. It grows on low fertility soils ranging from strongly acid to neutral or mildly alkaline, and is often very closely grazed by marsupials. Both subspecies are salt and drought tolerant, but not notably shade tolerant. Their potential to add greater drought tolerance in particular to the Asian Zoysia material in current use through future breeding programs is discussed.
Resumo:
A 2000-03 study to improve irrigation efficiency of grassed urban public areas in northern Australia found it would be difficult to grow most species in dry areas without supplementary watering. Sporoboulus virginicus and sand couch, Zoysia macrantha, were relatively drought-tolerant. Managers of sporting fields, parks and gardens could more than halve their current water use by irrigating over a long cycle, irrigating according to seasonal conditions and using grasses with low water use and sound soil management practices that encourage deep rooting. The use of effluent water provides irrigation and fertiliser cost savings and reduced nitrogen and phosphorus discharge to local waterways. Projected savings are $8000/ha/year in water costs for a typical sporting field.
Resumo:
Cities and urban spaces around the world are changing rapidly from their origins in the industrialising world to a post-industrial, hard wired landscape. A further embellishment is the advent of mobile media technologies supported by both existing and new communications and computing technology which claim to put the urban dweller at the heart of a new, informed and ‘liberated’ seat of participatory urban governance. This networked, sensor enabled society permits flows of information in a multitude of directions ostensibly empowering the citizenry through ‘smart’ installations such as ‘talking bus stops’ detailing services, delays, transport interconnections and even weather conditions along desired routes. However, while there is considerable potential for creative and transformative kinds of citizen participation, there is also the momentum for ‘function-creep’, whereby vast amounts of data are garnered in a broad application of urban surveillance. This kind of monitoring and capacity for surveillance connects with attempts by civic authorities to regulate, restrict, rebrand and reframe urban public spaces into governable and predictable arenas of consumption. This article considers questions around the possibilities for retaining and revitalising forms of urban citizenship, set in the context of Marshall’s original premise of civil, social and political citizenship(s) in the middle of the last century, following World War Two and the coming of the modern welfare state.
Resumo:
This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
Resistance to phosphine in target pests threatens market access for Australian grain. While the grains industry is now attempting to develop an effective and sustainable strategy to manage this resistance, action is severely limited by significant gaps in our knowledge of the key ecological factors that influence the development of resistance. There is a need to research this information as a foundation for a rational approach to managing phosphine resistance in the Australian grains industry. Research outcomes: The project has provided critical research methodologies and preliminary data to fill the large gaps in our knowledge of the ecology of two key pests, Rhyzopertha dominica and Tribolium castaneum, and how this may drive the development of phosphine resistance. This information will contribute to the groundwork for future research needed to provide a scientific basis for a rational resistance management strategy.
Resumo:
Precaudal vertebral counts were used to distinguish between 237 morphologically similar Carcharhinus limbatus and Carcharhinus tilstoni and were congruent with differences in reproductive ecology between the species. In addition to differing lengths at maturity and adult body size, the two species had asynchronous parturition, were born at different sizes and the relative frequencies of neonates differed in two coastal nursery areas. Despite evidence that hybridization can occur, these differences suggest the species are largely reproductively isolated.