915 resultados para UV-Raman spectroscopy
Resumo:
The effect of post-polymerization treatments (MW-microwave irradiatron and WB-water-bath) on the degree of conversion (DC) of three reline resins (Ufi Gel hard-U, Kooliner-K, and Tokuso Rebase Fast-T) and one denture base resin (Lucitone 550-L), submitted to two polymerization cycles (LS-short and LL-long), was evaluated by using FT-Raman spectroscopy (n = 5). The molecular weight (Mw) of the powder of all materials and of K polymerized specimens (control; MW; and WB; n = 3) was analyzed using GPC. DC data were analyzed using Kruskal-Wallis test (α = .05). For control specimens, there were no significant differences between U (68%) and LL (77%) and among LL, K (81%), and T (84%). LS (92%) had the highest DC (P<0.05). Only material K exhibited an increased DC after WB (P<0.05). All powders had Mw from 4.0 × 105 to 6.5 × 105 and narrow Mw distributions (2.1 to 3.6). Polymerization and post-polymerization produced K specimens with Mw similar to that of K powder.
Resumo:
The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a powder metallurgy method. Part of these implants were submitted to chemical and thermal treatment in order to deposit a biomimetic coating, aiming to evaluate its influence on the osseointegration of the implants. The implants were characterized by Scanning Electron Microscopy (SEM), Electron Dispersive X-Ray Spectroscopy (EDS) and Raman Spectroscopy. Three coated and three control (uncoated) implants were surgically inserted into thirty albino rabbits' left and right tibiae, respectively. Tibiae samples were submitted to histological and histomorphometric analyses, utilizing SEM, optical microscopy and mechanical tests. EDS results indicated calcium (Ca) and phosphorous (P) at the surface and Raman spectra exhibited an intense peak, characteristic of hydroxyapatite (HA). Bone neoformation was detected at the bone-implant interface and inside the pores, including the central ones. The mean bone neoformation percentage in the coated implants was statistically higher at 15 days, compared to 30 and 45 days. The mechanical tests showed that coated implants presented higher resistance to displacement, especially after 30 and 45 days.
Resumo:
Collagen makes up one third of the total protein in humans, being formed by the connection of three polypeptide chains arranged in a triple helix. This protein has fundamental importance in the formation of extracellular matrix of connective tissue. This study aimed to analyze the structural changes of collagen, which are resulting from inflammatory processes in oral mucosa, and to make the comparative analysis between the histopathology and the Raman spectra. The samples of tissues with inflammatory fibrous hyperplasia (IFH) and normal mucosa (NM) were evaluated by Raman Spectroscopy, hematoxylin-eosin and Massons trichrome stain. The histological analysis in both stains showed differences in collagen fibers, which was presented as thin fibers and arranged in parallel direction in NM and as collagen fibers are thick, mature and not organized, showing that these types of stain show morphological changes of collagen in IFH. The Raman Spectroscopy discriminate the groups of NM and IFH based on vibrational modes of proline, hydroxiproline and CH3, CH2. The histological stains only shows information from morphological data, and can be complemented by Raman spectra. This technique could demonstrate that inflammatory process caused some changes in collagen structure which is related to aminoacids such as proline and hidroxyproline. © 2011 SPIE-OSA.
Resumo:
The ability to control the carbon nanotube (CNT) dispersion in polymers is considered the key to most applications of nanotube/polymer composites. The carbon nanotube dispersion into water with different surfactants, as well as its incorporation into phenolic resins, was investigated. Ultrasonication of liquid suspensions was used to prepare stable dispersions. In order to evaluate the best surfactant to be used, light scattering and UV-Visible spectroscopy were employed. The structure of CNT reinforced of phenolic resin was analyzed in function of the concentration and type of surfactant, sonication power and time. It was also evaluated the influence in the dispersion by using the glass temperature transition properties being obtained by dynamic mechanical analyses and impact energy. © 2011 Sociedade Brasileira de Química.
Resumo:
In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.
Resumo:
Copper Pentacyanonitrosylferrate (NCuNP) nanoparticles were prepared in formamide solvent. The material was characterized by Infrared (FTIR), X-Ray Diffraction (XRD) and Ultraviolet-Visible (UV-Vis) Spectroscopy. The Cyclic Voltammogram (CV) the modified graphite paste electrode with NCuNP exhibits two redox couples with (Eθ,)1 = 0.29 and (E θ,)2 = 0.86 V attribute at Cu(I)/Cu (II) and Fe(II)(CN)5NO/Fe(III)(CN) 5NO processes, respectively (KCl = 1.0 mol L-1; v = 20 mV s-1). The redox couple with (Eθ,)2 presents an electrocatalytic response for sulfite. The modified graphite paste electrode gives a linear response of 7.0 × 10-4 to 3.0 × 10-2 mol L-1 (r = 0.998), for sulfite determination with Detection Limit (DL) of 1.76 × 10-3 mol L-1 and an amperometric sensitivity of 3.38 mA/mol L-1 and relative standard desviations ± 3% (n=3). ©The Electrochemical Society.
Resumo:
This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.
Resumo:
The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. © 2013 American Chemical Society.
Resumo:
Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
In this paper, we demonstrate that the intrinsic electric field created by a poly(o-methoxyaniline) (POMA) cushion layer hinders the changes in molecular conformation of poly(p-phenylenevinylene) (PPV) in layer-by-layer with dodecylbenzene sulfonic acid (DBS). This was modeled with density functional theory (DFT) calculations where an energy barrier hampered molecular movements of PPV segments when they were subjected to an electric field comparable to that caused by a charged POMA layer. With restricted changes in molecular conformation, the PPV film exhibited Franck-Condon transitions and the photoexcitation spectra resembled the absorption spectra, in contrast to PPV/DBS films deposited directly on glass, with no POMA cushion. Other effects from the POMA cushion were the reduced number of structural defects, confirmed with Raman spectroscopy, and an enhanced PPV emission at high temperatures (300 K) in comparison with the films on bare glass. The positive effects from the POMA cushion may be exploited for enhanced opto-electronic devices, especially as the intrinsic electric field may assist in separating photoexcited electron-hole pairs in photovoltaic devices. © 2013 American Institute of Physics.
Resumo:
Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C N2/CT (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure CN2/C T, providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were CN2/CT, chiral angle, and MN/CT (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data. © 2013 American Chemical Society.