858 resultados para UNMODIFIED GOLD NANOPARTICLES
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
Carbons have been prepared by the low-temperature pyrolysis, under argon, of a number of long-chain polymers. We have found that the resistivity (Omega cm(-1)) varies considerably with the temperature of pyrolysis; thus, for ammonium polyacrylate, the resistivity of that pyrolyzed at 600 degrees C is 9.7 x 10(4) Omega cm(-1) whereas that pyrolyzed at 1000 degrees C is ca. 3 Omega cm(-1). A similar situation arises for the other polymers studied (including radiolyzed cross-linked polyacrylamide). All those pyrolyzed at 600 degrees C had a resistivity of > 1 x 10(6) Omega cm(-1), whereas those pyrolyzed at 1000 degrees C had a resistivity of ca. 3-5 Omega cm(-1). A notable exception was that of unirradiated polyacrylamide, where the resistivity remained at > 1 x 10(6) Omega cm(-1) over the range of temperatures studied. The decrease of resistivity with increase of temperature of pyrolysis has been related to the formation of glassy carbon. Nanoparticles (4 nm) of tetragonal zirconia were formed when zirconium polyacrylate was pyrolyzed under similar conditions.
Resumo:
Synthesis, testing and characterisation of bimetallic gold, Au-M on ceria as catalysts were carried out for low temperature water-gas shift reaction (WGS). Amongst the entire screened catalysts 3 wt% (AU-Pt)/CeO2 displayed the best WGS activity than the monometallic promotors, giving the light-off curve at the lowest temperature in the range 100-300 degrees C. (Au-Pd)/CeO2 also achieved the same activity but at a higher temperature. It was also found that WGS activity was strongly correlated with the surface reducibility which in turn depended on the modified local electronic band structure of promoted ceria. These results clearly suggest that the key role of bimetallic promoter may involve in facilitating the creation of defective reduced surface by exerting its local electronic effect on ceria to form the surface germinal -OH groups in water which act as active sites for enhanced WGS activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
In situ synthesis and testing of Ru and Pd nanoparticles as catalysts in the presence of ammonium perfluorohydrocarbo-carboxylate surfactant in supercritical carbon dioxide were carried out in a stainless steel batch reactor at 40 degrees C over a pressure range of 80-150 bar CO2/H-2. Direct Visualization of the formation of a supercritical phase at above 80 bar, followed by the formation of homogeneous microemulsions containing dispersed Ru nanoparticles and Pd nanoparticles in scCO(2) at above 95-100 bar, were conducted through a sapphire window reactor using a W-0 (molar water to surfactant ratio) of 30. The synthesised RU and Pd nanoparticles showed interesting product distributions in the selective hydrogenation of organic molecules, depending critically oil the density and polarity of the fluid (which ill turn depends on the pressure applied). Thus, selective hydrogenation of the citral molecule, which contains three reducible groups (aldehydes and double bonds at the 23 and 6,7 positions), is feasible Lis a chemical probe. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO(2)) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO(2) is therefore carried out in a stainless steel batch reactor at 40 degreesC and in a 150 bar CO2/H-2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO(2) is observed through a sapphire window reactor at W-0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.
Resumo:
Several simple gold compounds and their physical mixtures with TiO2 Were tested for low temperature CO oxidation. No true catalytic activity was found for gold precursors on their own, although both Au2O3 and Au(OH)(3) react well with CO even at room temperature in a non-catalytic manner. Despite that catalytic activity was obtained by physically mixing Au(OH)(3) or Au2O3 with TiO2 and the results further emphasise the importance of a good contact between the gold and the support for good CO oxidation activity. (c) 2005 Published by Elsevier.
Resumo:
New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.
Resumo:
High-temperature polyol methods were used to fabricate micro- or nano-sized gold plates. 1,2propanediol served as both medium and reducing agent. Triangular plates and polygonal plate shapes derived from triangular prisms as well as pentagonal structured gold particles have been synthesized. Poly(vinylpyrrolidone) (PVP) plays an important role, but is not necessary, for the formation of these structures. These gold plates may have applications in the characterisation of adsorbed proteins or peptides. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Self-assembly of monodisperse, silica-encapsulated, face-centered tetragonal FePt nanoparticles forms closely packed 2D arrays (see figure). Placing monodisperse FePt nanoparticles in silica nanocapsules allows the transition from a disordered face-centered cubic phase to a ferromagnetic crystalline face-centered tetragonal structure at elevated temperature without severe sintering. These materials are potential candidates for the generation of ultrahigh-density magnetic recording media.
Resumo:
We have developed a new method for the synthesis of Pd nanoparticles with controllable sizes within a silica matrix using solid-supported surfactants in supercritical CO2. XRD, HRTEM and CO chemisorption data show that unformly sized Pd nanoparticles are evenly distributed within the porous silica and are chemically tethered by surfactant molecules [poly(oxyethylene stearyl ether) and fluorinated poly(oxyethylene)]. It is postulated that tiny solid-supported surfactant assemblies act as nano-reactors for the template synthesis of nanoparticles or clusters from the soluble precursors therein.
Resumo:
The method of measuring the partition coefficient of a test molecule comprises incorporating the molecule in a composition of nanoparticles having a porous surface and a first solvent, wherein a second solvent has been absorbed into the porous surface, and said first solvent is immiscible with said second solvent, and then separating the nanoparticles and the first solvent. The amount of the molecule which remains in the first solvent is determined to enable calculation of the partition coefficient. The nanoparticles may have a magnetic core to allow easy separation.
Resumo:
Poly(acrylic acid) forms insoluble hydrogen-bonded interpolymer complexes with methylcellulose in aqueous solutions under acidic conditions. In this work the reaction heats and binding constants were determined for the complexation between poly(acrylic acid) and methylcellulose by isothermal titration calorimetry at different pH and findings are correlated with the aggregation processes occurring in this system. The principal contribution to the complexation heat results from primary polycomplex particle aggregation. Transmission electron microscopy of nanoparticles produced at pH 1.4 and 2.4 demonstrated that they are spherical and dense structures. The nanoparticles ranged from 80 to 200 nm, whereas particles formed at pH 3.2 were 20-30 nm and were stabilized against aggregation by a network of uncomplexed macromolecules. For the first time, multilayered materials were developed on the basis of hydrogen-bonded complexes of poly(acrylic acid) and methylcellulose using layer-by-layer deposition on a glass surface. The thickness of these films was a linear function of the number of deposition cycles. The materials were subsequently cross-linked by thermal treatment, resulting in ultrathin hydrogels which detached from the glass substrate upon swelling. The swelling capacity of ultrathin hydrogels differed from the swelling of the thicker films of a similar chemical composition.