974 resultados para UNDERIVATIZED AMINO-ACIDS
Human IgG responses against the N-terminal region of Merozoite Surface Protein 1 of Plasmodium vivax
Resumo:
The complete primary structure of the gene encoding the Merozoite Surface Protein 1 of Plasmodium vivax (PvMSP-1) revealed the existence of interspecies conserved regions among the analogous proteins of other Plasmodia species. Here, three DNA recombinant clones expressing 50, 200 and 500 amino acids from the N-terminal region of the PvMSP-1 protein were used on ELISA and protein immunoblotting assays to look at the IgG antibody responses of malaria patients from the Brasilian amazon region of Rondônia. The results showed the existance of P. vivax and P. falciparum IgG antibodies directed against PvMSP-1 antigenic determinants expressed in the clones containing the first 200 and the following 500 amino acids of the molecule, but not within the one expressing the most N-terminal 50 amino acids. Interestingly, there was no correlation between the levels of these IgG antibodies and the previous number of malaria infections.
Resumo:
Recently we have shown that two hybrid proteins expressed in Escherichia coli confer protective immunity to Aotus monkeys against an experimental Plasmodium falciparum infection (Knapp et al., 1992). Both hybrid proteins carry a sequence containing amino acids 631 to 764 of the serine stretch protein SERP (Knapp et al., 1989b). We have studied the diversity of this SERP region in field isolates of P. falciparum. Genomic DNA was extracted from the blood of six donors from different endemic areas of Brazil and West Africa. The SERP region encoding amino acids 630 to 781 was amplified by polymerase chain reaction (PCR) and sequenced. Only conserved amino acid substitutions in maximally two positions of the analyzed SERP fragment could be detected which supports the suitability of this SERP region as a component of anti-blood stage malaria vaccine.
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Resumo:
RESUME : Dans ce travail effectué chez le rat adulte, l'excitotoxicité rétinienne est élicitée par injection intravitréenne de NMDA. Les lésions en résultant sont localisées dans la rétine interne. Elles prennent la forme de pycnoses dans la couche des cellules ganglionnaires (corps cellulaires des cellules ganglionnaires et amacrines déplacées) et dans la partie interne de la couche nucléaire interne (cellules amacrines). Cette localisation est liée à la présence de récepteurs au glutamate de type NMDA sur ces cellules. L'activation de ces récepteurs entraîne un influx calcique et l'activation de diverses enzymes (phospholipase A, calpaïnes, calmoduline, synthase d'oxyde nitrique). La signalisation se poursuit en aval en partie par les voies des Mitogen Activated Protein Kinase (MAPK) : ERK, p38, ]NK. Dans les expériences présentées, toutes trois sont activées après l'injection de NMDA. Dans les cascades de signalisation de JNK, trois kinases s'ancrent sur une protéine scaffold. Les MAPKKK phosphorylent MKK4 et MKK7, qui phosphorylent JNK. JNK a de nombreuses cibles nucléaires (dont le facteur de transcription c-Jun) et cytoplasmiques. La voie de JNK est bloquée par l'inhibiteur peptidique D-JNKI-1 en empêchant l'interaction de la kinase avec son substrat. L'inhibiteur est formé de 20 acides aminés du domaine de liaison JBD et de 10 acides aminés de la partie TAT du virus HIV. L'injection intravitréenne de D-JNKI-1 permet une diminution des taux de JNK et c-Jun phosphorylés dans les lysats de rétine. L'effet prépondérant est la restriction importante des altérations histologiques des couches internes de la rétine. L'évaluation par électrorétinogramme met en sus en évidence une sauvegarde de la fonction cellulaire. Ce travail a ainsi permis d'établir la protection morphologique et fonctionnelle des cellules de la rétine interne par inhibition spécifique de la voie de JNK lors d'excitotoxicité. SUMMARY Excitotoxicity in the retina associates with several pathologies like retinal ischemia, traumatic optic neuropathy and glaucoma. In this study, excitotoxicity is elicited by intravitreal NMDA injection in adult rats. Lesions localise in the inner retina. They present as pyknotic cells in the ganglion cell layer (ganglion cells and displaced amacrines) and the inner nuclear layer (amacrine cells). These cells express NMDA glutamate receptors. The receptor activation leads to a calcium flow into the cell and hence enzyme activation (phospholipase, calpains, calmodulin, nitric oxide synthase). The subsequent signaling pathways can involve the Mitogen Activated Protein Kinases (MAPK): ERK, p38 end JNK. These were all activated in our experiments. The signaling cascade organises around several scaffold proteins. The various MAPKKK phosphorylate MKK4 and MKK7, which phosphorylate JNK. JNK targets are of nuclear (c-Jun transcription factor) or cytoplasmic localisation. The peptidic inhibitor D-JNKI-1, 20 amino acids from the JNK binding domain JBD coupled to 10 amino acids of the TAT transporter, disrupts the binding of JNK with its substrate. Intravitreal injection of the inhibitor lowers phosphorylated forms of JNK and c-Jun in retinal extracts. It protects strongly against histological lesions in the inner retina and allows functional rescue.
Resumo:
We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients. In contrast, peptides NY-ESO-1 157-167 and NY-ESO-1 155-163, which bind very strongly to HLA-A*0201, are recognized less efficiently. In agreement with previous data, substitution of peptide NY-ESO-1 157-165 COOH-terminal C with various other amino acids resulted in a significantly increased binding to HLA-A*0201 molecules as well as in an increased CTL recognition, although variable at the clonal level. Among natural peptides, NY-ESO-1 157-165 and NY-ESO-1 157-167 exhibited good in vitro immunogenicity, whereas peptide NY-ESO-1 155-163 was poorly immunogenic. The fine specificity of interaction between peptide NY-ESO-1 C165A, HLA-A*0201, and T-cell receptor was analyzed at the molecular level using a series of variant peptides containing single alanine substitutions. The findings reported here have significant implications for the formulation of NY-ESO-1-based vaccines as well as for the monitoring of either natural or vaccine-induced NY-ESO-1-specific CTL responses in cancer patients.
Resumo:
Despite opportunities for radiation provided by spatio-temporal isolation, the basic morphological plan of pulmonate snails has remained conservative. In consequence of the resulting dearth of morphological characters and their plasticity, there is a case for using biochemical characters such as exogenous chemicals released by the snails (e.g. amino acids) and their chemoreception niche as taxonomic aids to classify snails of medical importance. As these same chemicals are used by snails to distinguish conspecifics they could also be used as "environmental antibodies" in controlled release formulations (CRF's) designed to remove target snails in a specific, cost-effective and ecologically acceptable manner. The snails, surface-living bacteria, algae and macrophytic plants are considered as co-evolved, interactive modular systems with strong mutualistic elements. Recently, anthropogenic perturbations such as deforestation, and damming of flowing waters, have benefited these modules whereas others such as river canalization, acid deposition, accumulation of pesticide residues and eutrophication have harmed them. Research is needed to elucidate the factors which limit the growth of snails in primitive habitats, uninfluenced by man, as well as in those subject to harmful anthropogenic factors. The understanding thus gained could be applied to develop cost-effective primary health care strategies to reduce or prevent transmission of schistosomiasis and other water related diseases.
Resumo:
Dermatophytes are keratinophilic fungi that can be pathogenic for humans and animals by infecting the stratum corneum, nails, claws or hair. The first infection step consists of adherence of arthroconidia to the stratum corneum. The mechanisms and the kinetics of adherence have been investigated using different in vitro and ex vivo experimental models, most notably showing the role of a secreted serine protease from Microsporum canis in fungal adherence to feline corneocytes. After germination of the arthroconidia, dermatophytes invade keratinised structures that have to be digested into short peptides and amino acids to be assimilated. Although many proteases, including keratinolytic ones, have been characterised, the understanding of dermatophyte invasion mechanisms remains speculative. To date, research on mechanisms of dermatophyte infection focused mainly on both secreted endoproteases and exoproteases, but their precise role in both fungal adherence and skin invasion should be further explored.
Resumo:
Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.
Resumo:
Glucagon-like peptide 1 (GLP-1) is a hormone derived from the preproglucagon molecule and is secreted by intestinal L cells. It is the most potent stimulator of glucose-induced insulin secretion and also suppresses in vivo acid secretion by gastric glands. A cDNA for the GLP-1 receptor was isolated by transient expression of a rat pancreatic islet cDNA library into COS cells; this was followed by binding of radiolabeled GLP-1 and screening by photographic emulsion autoradiography. The receptor transfected into COS cells binds GLP-1 with high affinity and is coupled to activation of adenylate cyclase. The receptor binds specifically GLP-1 and does not bind peptides of related structure and similar function, such as glucagon, gastric inhibitory peptide, vasoactive intestinal peptide, or secretin. The receptor is 463 amino acids long and contains seven transmembrane domains. Sequence homology is found only with the receptors for secretin, calcitonin, and parathyroid hormone, which form a newly characterized family of G-coupled receptors.
Resumo:
Background: Hepatitis C virus (HCV) nonstructural protein 2 (NS2) plays essential roles in particle assembly and polyprotein processing. It harbors an N-terminal membrane domain comprising three putative transmembrane s egments ( amino acids [aa] 1-93) a nd a C-terminal cysteine protease domain (aa 94-217). Given that the latter has been predicted to be membrane-associated, we aimed to identify molecular determinants for membrane association of the NS2 protease domain. Methods: A comprehensive panel of NS2 deletion constructs was analyzed by fluorescence microscopy, selective membrane extraction, and m embrane flotation assays. Candidate aa r esidues involved in membrane association were substituted by site-directed mutagenesis. Results: The NS2 protease domain alone was found to associate with membranes. Two N-terminal α-helices comprising aa 102-114 and aa 123-136 were found to m ediate this a ssociation, w ith c onserved hydrophobic and positively charged aa residues representing the key determinants. I nterestingly, m utagenesis analyses r evealed that electrostatic interactions involving a positively charged aa residue in α-helix aa 123-136 are required for membrane association. Mono- and bicistronic (i.e. NS2 c leavage-independent) HCV constructs were prepared to i nvestigate the effect o f these substitutions on RNA replication and infectious viral particle formation. Conclusions: T he NS2 protease d omain itself harbors m olecular determinants for membrane association within α-helices aa 102-114 and aa 1 23-136 which may contribute to p roper p ositioning of t he active site. These results provide new insights i nto the membrane topology and t he p oorly understood f unction of t his essential viral protease.
Resumo:
Background and aim: Neuropathic pain (NP) is a frequent and disabling disorder occurring as a consequence of a direct lesion of the nervous system and recurrently associated with a positive shift toward nervous system excitability. Peripheral nerve activity is mainly carried by voltage-gated sodium channels (VGSC), with Nav1.7 isoform being an important candidate since loss of function mutations of its gene is associated with congenital inability to experience pain. Interestingly, ubiquitin ligases from the Nedd4 family are well known proteins that regulate the turnover of many membrane proteins such as VGSC and we showed Nedd2-2 is downregualted in experimental models of chronic pain. The aim of this study was to investigate the importance of Nedd4-2 in the modulation of Nav1.7 at the membrane. Methods: In vitro: whole cell patch clamp on HEK293 cell line stably expressing Nav1.7 was used to record sodium currents (INa), where the peak current of INa reflects the quantity of functional Nav1.7 expressed at the membrane. The possibility that Nedd4-2 modulates the currents was assessed by investigating the effect of its cotransfection on INa. Biotinylation of cell surface was used to isolate membrane-targeted Nav1.7. Furthermore, as the interaction between Nedd4-2 and Nav isoforms was previously reported to rely on an xPPxYx sequence (PY-motif), we mutated this latter to study its impact in the specific interaction between Nav1.7 and Nedd4-2. GST-fusion proteins composed of the Nav1.7 c terminal 66 amino acids (wild-type or PY mutated) and GST were used to pull-down Nedd4-2 from lysates. Results: Co-transfection of Nav1.7 with Nedd4-2 reduced the Nav1.7 current amplitude by ~80% (n = 36, p <0.001), without modifying the biophysical properties of INa. In addition, we show that the quantity of Nav1.7 at the membrane was decreased when Nedd4-2 was present. This effect was dependent on the PY-motif since mutations in this sequence abolished the down-regulatory effect of Nedd4-2. The importance of this motif was further confirmed by pull down experiments since the PY mutant completely eliminate the interaction with Nedd4-2. Perspectives: Altogether, these results point to the importance of Nedd4-2 as a Nav1.7 regulator through cell surface modulation of this sodium channel. Further experiments in freshly dissociated neurons from wild type and Scn1bflox/Nedd4-2Cre mice are needed to confirm in vivo these preliminary data.
Resumo:
Pseudomonas aeruginosa has an anabolic (ArgF) and a catabolic (ArcB) ornithine carbamoyltransferase (OTCase). Despite extensive sequence similarities, these enzymes function unidirectionally in vivo. In the dodecameric catabolic OTCase, homotropic cooperativity for carbamoylphosphate strongly depresses the anabolic reaction; the residue Glu1O5 and the C-terminus are known to be essential for this cooperativity. When Glu1O5 and nine C-terminal amino acids of the catabolic OTCase were introduced, by in vitro genetic manipulation, into the closely related, trimeric, anabolic (ArgF) OTCase of Escherichia coli, the enzyme displayed Michaelis-Menten kinetics and no cooperativity was observed. This indicates that additional amino acid residues are required to produce homotropic cooperativity and a dodecameric assembly. To localize these residues, we constructed several hybrid enzymes by fusing, in vivo or in vitro, the E. coli argF gene to the P. aeruginosa arcB gene. A hybrid enzyme consisting of 101 N-terminal ArgF amino acids fused to 233 C-terminal ArcB residues and the reciprocal ArcB-ArgF hybrid were both trimers with little or no cooperativity. Replacing the seven N-terminal residues of the ArcB enzyme by the corresponding six residues of E. coli ArgF enzyme produced a dodecameric enzyme which showed a reduced affinity for carbamoylphosphate and an increase in homotropic cooperativity. Thus, the N-terminal amino acids of catabolic OTCase are important for interaction with carbamoylphosphate, but do not alone determine dodecameric assembly. Hybrid enzymes consisting of either 26 or 42 N-terminal ArgF amino acids and the corresponding C-terminal ArcB residues were both trimeric, yet they retained some homotropic cooperativity. Within the N-terminal ArcB region, a replacement of motif 28-33 by the corresponding ArgF segment destabilized the dodecameric structure and the enzyme existed in trimeric and dodecameric states, indicating that this region is important for dodecameric assembly. These findings were interpreted in the light of the three-dimensional structure of catabolic OTCase, which allows predictions about trimer-trimer interactions. Dodecameric assembly appears to require at least three regions: the N- and C-termini (which are close to each other in a monomer), residues 28-33 and residues 147-154. Dodecameric structure correlates with high carbamoylphosphate cooperativity and thermal stability, but some trimeric hybrid enzymes retain cooperativity, and the dodecameric Glu1O5-->Ala mutant gives hyperbolic carbamoylphosphate saturation, indicating that dodecameric structure is neither necessary nor sufficient to ensure cooperativity.
Resumo:
Amino acids form the building blocks of all proteins. Naturally occurring amino acids are restricted to a few tens of sidechains, even when considering post-translational modifications and rare amino acids such as selenocysteine and pyrrolysine. However, the potential chemical diversity of amino acid sidechains is nearly infinite. Exploiting this diversity by using non-natural sidechains to expand the building blocks of proteins and peptides has recently found widespread applications in biochemistry, protein engineering and drug design. Despite these applications, there is currently no unified online bioinformatics resource for non-natural sidechains. With the SwissSidechain database (http://www.swisssidechain.ch), we offer a central and curated platform about non-natural sidechains for researchers in biochemistry, medicinal chemistry, protein engineering and molecular modeling. SwissSidechain provides biophysical, structural and molecular data for hundreds of commercially available non-natural amino acid sidechains, both in l- and d-configurations. The database can be easily browsed by sidechain names, families or physico-chemical properties. We also provide plugins to seamlessly insert non-natural sidechains into peptides and proteins using molecular visualization software, as well as topologies and parameters compatible with molecular mechanics software.
Resumo:
Previous investigations showed that Schistosoma mansoni infection aggravates protein malabsorption in undernourished mice and this can be reverted by administration of casein hydrolysate. The present study was undertaken to evaluate the effects of ingestion of casein hydrolysate for long periods. Albino Swiss mice were divided into eight groups. Diets contained 5% (undernourished ) or 20% (controls) casein levels. For each group there were sub-groups ingesting whole or hydrolysed casein for 12 weeks. Infection with S. mansoni developed in half of the animals under each diet. All undernourished mice developed malabsorption. Low albuminemia was detected in infected animals independently of the protein level in the diet. However, albuminemia was lower in infected controls than in undernourished non-infected mice, suggesting a deficient liver protein synthesis. Infected mice fed on a 20% protein hydrolysed diet exhibited low weight gain and high mortality rates. On the other hand, non-infected mice ingesting the same diet had the highest body weights. We are investigating the hypothesis that infected mice, even when fed normal diets, are unable to metabolise large amounts of amino acids due to the liver lesions related to schistosomiasis and as a result die of hepatic coma. In some of them, the excessive accumulation of ammonia in the blood enhances the outcome of an encephalopathy.