857 resultados para UAS, Composite materials, FEM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced grid stiffened composite cylindrical shell is widely adopted in advanced structures due to its exceptional mechanical properties. Buckling is a main failure mode of advanced grid stiffened structures in engineering, which calls for increasing attention. In this paper, the buckling response of advanced grid stiffened structure is investigated by three different means including equivalent stiffness model, finite element model and a hybrid model (H-model) that combines equivalent stiffness model with finite element model. Buckling experiment is carried out on an advanced grid stiffened structure to validate the efficiency of different modeling methods. Based on the comparison, the characteristics of different methods are independently evaluated. It is arguable that, by considering the defects of material, finite element model is a suitable numerical tool for the buckling analysis of advanced grid stiffened structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additive manufacturing (AM) technology was implemented together with new composite material comprising a synthetic materials, namely, polycaprolactone and bioactive glass with the ultimate aim of the production of an off-the-shelf composite bone scaffold product with superior bone regeneration capacity in a cost effective manner. Our studies indicated that the composite scaffolds have huge potential in promoting bone regeneration. It is our contention that owing to the fruits of such innovative efforts, the field of bone regeneration can metamorphose into a technology platform that allows clinicians worldwide to create tissue-engineered bone with economies of scale in the years to come.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tight networks of interwoven carbon nanotube bundles are formed in our highly conductive composite. The composite possesses propertiessuggesting a two-dimensional percolative network rather than other reported dispersions displaying three-dimensional networks. Binding nanotubes into large but tight bundles dramatically alters the morphology and electronic transport dynamics of the composite. This enables itto carry higher levels of charge in the macroscale leading to conductivities as high as 1600 S/cm. We now discuss in further detail, the electronic and physical properties of the nanotube composites through Raman spectroscopy and transmission electron microscopy analysis. When controlled and usedappropriately, the interesting properties of these composites reveal their potential for practical device applications. For instance, we used this composite to fabricate coatings, whic improve the properties of an electromagnetic antenna/amplifier transducer. The resulting transducer possesses a broadband range up to GHz frequencies. A strain gauge transducer was also fabricated using changes in conductivity to monitor structural deformations in the composite coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and up-scalable wet-mechanochemical process is designed for fabricating ultra-fine SnO2 nanoparticles anchored on graphene networks for use as anode materials for sodium ion batteries. A hierarchical structure of the SnO2@graphene composite is obtained from the process. The resultant rechargeable SIBs achieved high rate capability and good cycling stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure of a cast Al---Si alloy-graphite particle composite is examined using optical and analytical scanning electron microscopy. Specimens containing different percentages of graphite were machined by orthogonal planning with 25° and 45° rake angle tools at both 6.5 and 13.2 m min−1. The machining forces are reported and the chip-rake-face friction coefficients and shear flow stresses are calculated. It is shown that the reduction in machining forces with increasing graphite content is due mostly to a decrease in the shear flow stress rather than to lower chip-rake-face friction. Both the polished and the machined surfaces of the composite are rougher than those of the simple alloy, apparently owing to the greater porosity, the tearing out of graphite particles, or the opening of cracks at the graphite particles in the wake of the tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel zinc hydroxysalt–Pt metal nanoparticle composite was prepared by intercalation of the anionic platinum complex, [PtCl6]2− in nickel zinc hydroxysalt through ion exchange reaction and subsequent reduction of the platinum complex by ethanol. Powder X-ray diffraction and microscopy studies indicate that the process of reduction of the platinum complex in the interlayer region of the anionic clay takes place topotactically without destroying the layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic, natural, or composite, biomaterials occupy a key position in the management of disease and support continuous advancement of health care. Clinical utility of many permanent and biodegradable implants can be significantly improved via surface modification. Here, we discuss a novel polymer material developed from essential oil-based monoterpene alcohol using plasma polymerisation. The developed coatings are cytocompatible and limit adhesion and proliferation of a variety of pathogens. The coating can also be used to control degradation behaviour of resorbable materials, such as magnesium.