919 resultados para Two-step model
Resumo:
Catalysts with spinel structure derived from Hydrotalcite-like Compounds (HTLcs) containing cobalt have been investigated in NO catalytic reduction by Co. It was found that catalysts with spinel structures derived from HTLcs had obviously higher activity than that prepared from general methods. A two-step reaction was observed during the reaction curse: NO was first reduced to N2O by Co, and with the increase of temperature, the N2O was reduced to N-2. The reactivity of the catalysts studied increased with the amount of cobalt-content in the catalyst, and decreased with the calcination temperature. The crystal defect would play an important role in the reaction.
Resumo:
In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.
Resumo:
An organo-soluble polyimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2'dimethyl-4,4'-methylene dianiline (DMMDA), was synthesized via two-step polycondensation accompanied by chemical imidization. Five fractions were prepared by fractionation. The dilute solutions of the fractions were studied by LLS (Laser Light Scattering) and the intrinsic viscosities of the fractions were measured. The unperturbed dimension was determined by the intrinsic viscosity with the Stockmayer-Fox equation. The results indicate that the polyimide in this study has a flexible chain conformation in chloroform and N,N-dimethyl acetamide (DMAc). However, the degree of chain expansion differs in different solvents. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
An organo-soluble polyimide based on 4,4'-(1,4-phenylenedioxy)diphthalic anhydride and 2,2'-dimethyl-4,4'-methylenedianiline was synthesized by two-step polycondensation accompanied by chemical imidization. Polyimide films were prepared by spray casting onto glass substrates. The study focused on the separation of carbon dioxide (CO2) from natural gas and the enrichment of methane (CH4) from butane (C4H18). The permeability and permselectivity coefficients of these gases were determined.
Resumo:
An organo-soluble polyimide was successfully synthesized by two step polycondensation accompanied with chemical imidization. Optical anisotropy of thin films was detected by a prism-coupler technique. The results showed that the optical anisotropic properties of thin films prepared from solutions in different solvents depend on the solution properties. It is concluded that the more expanded the chain conformation in solution, the larger the negative birefringence of thin films. (C) 1997 Elsevier Science Ltd.
Resumo:
A series of new optically active aromatic polyimides containing axially dissymmetric 1,1'-binaphthalene-2,2-diyl units were prepared from optically pure (R)-(+)-or (S)-(-)-2,2'-bis(3,4-dicarboxyphenoxy)-1,1'-binaphthalene dianhydrides and various aromatic diamines via a conventional two-step procedure that included ring-opening polycondensation and chemical cyclodehydration. The optically pure isomer of dianhydride was prepared by a nucleophilic substitution of optically pure (R)-(+)or (S)-(-)1,1'-bi-2-naphthol with 4-nitrophthalonitrile in aprotic polar solvent and subsequent hydrolysis of the resultant tetranitrile derivatives, followed by the dehydration of the corresponding tetracarboxylic acids to obtain the dianhydrides. These polymers were readily soluble in common organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc., and have glass transition temperatures of 251-296 degrees C, and 5% weight loss occurs not lower than 480 degrees C. The specific rotations of the optically active polyimides ranged from +196 degrees to +263 degrees, and the optical stability and chiroptical properties of them were also studied. (C) 1997 John Wiley & Sons, Inc.
Resumo:
2,2'-Bis(3,4-dicarboxyphenoxy)-1,1'-binaphthyl dianhydride was used as a new monomer with various aromatic diamines to obtain polyimides by the usual two-step method. The bis(ether anhydride) was prepared by a nucleophilic substitution of I,1'-bi-2-naphthol with N-phenyl-4-chlorophthalimide, N-methyl-4-nitrophthalimide or 4-nitrophthalonitrile in aprotic polar solvent, and subsequent hydrolysis of the resulting bis(ether imide)s or bis(ether dinitrile), and then dehydration of the corresponding tetracarboxylic acid to afford the dianhydride. Most of the obtained polyimides were soluble in chloroform, pyridine, DMF, etc. The polyimide prepared from p-phenylene diamine was partial crystalline, whereas the others showed amorphous patterns in a WAXD study. These polymers have glass transition temperatures between 255-294 degrees C and 5% weight loss temperatures in the range of 502-541 degrees C in nitrogen and 473-537 degrees C in air. (C) 1997 Elsevier Science Ltd.
Resumo:
The blend polyamide 1010/N,N'-(diphenylmethane-4,4'-diyl)bismaleimide (PA1010/ BMI) has been investigated by means of WAXD and SAXS. The results obtained with the help of the Ruland, variance and 1D EDCF analysis showed that the degree of crystallinity (W-c,W-x), crystallite size (L(hikl)), long period (L) and thickness of average crystal lamellae (d) decrease with BMI content. Experimental and calculated density values (rho(c)) are in good agreement. Addition of BMT to PA1010 causes an increase in structural distortion. The results from SAXS analysis also supported that a crystalline amorphous interphase exists in the lamellae of semicrystalline polymers, so that a three-phase model instead of the traditional two-phase model should be used.
Resumo:
An electrochemically polymerized flavin adenine dinucleotide (FAD) film electrode is reported for the first time. The polymerized film was prepared by a two-step method. The electrocatalytic reduction of dioxygen at a glassy carbon electrode (GCE) modifie
Resumo:
Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.
Resumo:
Growth hormone (GH), prolactin (PRL) and somatolactin (SL) were purified simultaneously under alkaline condition (pH 9.0) from pituitary glands of sea perch (Lateolabrax japonicas) by a two-step procedure involving gel filtration on Sephadex G-100 and reverse-phase high-performance liquid chromatography (rpHPLC). At each step of purification, fractions were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting with chum salmon GH. PRL and SL antisera. The yields of sea perch GH, PRL and SL were 4.2, 1.0 and 0.28 mg/g wet tissue, respectively. The molecular weights of 19,200 and 20,370 Da were estimated by SDS-PAGE for sea perch GH and PRL, respectively. Two forms of sea perch SL were found: one (28,400 Da) is probably glycosylated, while the other one (23,200 Da) is believed to be deglycosylated. GH bioactivity was examined by an in vivo assay. Intraperitoneal injection of sea perch GH at a dose of 0.01 and 0.1 mug/g body weight at 7-day intervals resulted in a significant increase in body weight and length of juvenile rainbow trout. The complete sea-perch GH amino acid sequence of 187 residues was determined by sequencing fragments cleaved by chemicals and enzymes. Alignment of sea-perch GH with those of other fish GHs revealed that sea-perch GH is most similar to advanced marine fish, such as tuna, gilthead sea bream, yellowfin porgy, red sea bream, bonito and yellow tail with 98.4, 96.2%, 95.7%, 95.2%, 94.1% and 91% sequence identity, respectively. Sea-perch GH has low identity to Atlantic cod (76.5%), hardtail (73.3%), flounder (68.4%), chum salmon (66.3%), carp (54%) and blue shark (38%). Partial amino-acid sequences of 127 of sea-perch PRL and the N-terminal of 16 amino-acid sequence of sea-perch SL have been determined. The data show that sea-perch PRL has a slightly higher sequence identity with tilapia PRL( 73.2%) than with chum salmon PRL(70%) in this 127 amino-acid sequence. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The color mutations in Bangiaceae were investigated by treating the blades, conchocelis and conchospores phase of Bangia sp., Porphyra yezoensis, and P. haitanensis sampled in China with mutagen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). A high percentage of mutation in different expression characteristics in all three phases were shown within optimum mutagen concentrations. Among mutagenized blades, mutations occurred on single cells, which is a direct outcome of mutation of haploid cells. The mutation of mutagenized conchocelis resulted in a two-step process: low-level expression in conchocelis phase, and high-level expression in progeny, explaining that mutation took place in diploid cells. The mutations of conchospores were expressed immediately at germination of spores, indicating a change in ploidy. This paper reports the process of meiosis and its effect on frond development, and the relation between color mutations and morphological characteristics expressed by mutations in Bangiaceae.
Resumo:
Mid-ocean ridge basalt (MORB) samples from the East Pacific Rise (EPR 12 degrees 50'N) were analyzed for U-series isotopes and compositions of plagioclase-hosted melt inclusions. The Ra-226 and Th-230 excesses are negatively correlated; the Ra-226 excess is positively correlated with Mg# and Sm/Nd, and is negatively correlated with La/Sm and Fe-8; the Th-230 excess is positively correlated with Fe-8 and La/Sm and is negatively correlated with Mg# and Sm/Nd. Interpretation of these correlations is critical for understanding the magmatic process. There are two models (the dynamic model and the "two-porosity" model) for interpreting these correlations, however, some crucial parameters used in these models are not ascertained. We propose instead a model to explain the U-series isotopic compositions based on the control of melt density variation. For melting either peridotite or the "marble-cake" mantle, the FeOt content, Th-230 excess and La/Sm ratio increases and Sm/Nd decreases with increasing pressure. A deep melt will evolve to a higher density and lower Mg# than a shallow melt, the former corresponds to a long residence time, which lowers the Ra-226 excess significantly. This model is supported by the existence of low Ra-226 excesses and high Th-230 excesses in MORBs having a high Fe-8 content and high density. The positive correlation of Ra-226 excess and magma liquidus temperature implies that the shallow melt is cooled less than the deep melt due to its low density and short residence time. The correlations among Fe-8, Ti-8 and Ca-8/Al-8 in plagioclase-hosted melt inclusions further prove that MORBs are formed from melts having a negative correlation in melting depths and degrees. The negative correlation of Ra-226 excess vs. chemical diversity index (standard deviation of Fe-8, Ti-8 and Ca-8/Al-8) of the melt inclusions is in accordance with the influence of a density-controlled magma residence time. We conclude that the magma density variation exerts significant control on residence time and U-series isotopic compositions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
近年来,生物制氢技术与废物综合治理技术相结合,在处理废物的同时获得清洁的能源。目前生物制氢技术发展的瓶颈问题是高效产氢菌种的获得。因此,本研究采用不同预处理方法对海洋污泥的产氢能力的影响进行了分析,同时分离获得多株海洋产酸产氢细菌和海洋光合产氢细菌。 采用不同预处理方法(包括酸处理、碱处理、热处理和硝酸盐处理)获得海洋产酸产氢混合菌种,且其对产氢能力的影响进行分析。结果表明在所有预处理方法中,热处理的最大产氢量最高;于是,我们研究了不同起始pH值(pH 4-10.0)和不同底物浓度对热处理产氢菌群的产氢能力的影响。结果表明热处理产氢菌群的最适起始pH值为8.0,该值与天然海水的pH值相近。这意味着该产酸产氢菌群可作为海洋有机废物处理的候选菌群。 通过富集获得两类海洋光合产氢菌群,它们分别可以利用发酵产氢的关键副产物—乙酸或丁酸作为产氢碳源。研究表明温度、光照强度、起始pH和乙酸或丁酸浓度皆对两类光合产氢菌群的生长和产氢能力皆有明显影响。此外,产酸产氢菌群和光合细菌菌群耦联放氢进行了初步研究,结果表明藕联放氢可以获得较高的产氢量和底物利用率。 建立了一种厌氧产氢细菌的快速筛选方法。采用该方法从已获得的暗发酵和光合高效产氢菌群中分别分离高效产氢菌株。结果分离纯化获得暗发酵产氢细菌61株和光合产氢细菌34株。其中12株暗发酵产氢细菌和7株光合产氢细菌产氢量相对较高。 利用海水养殖有机废水进行微生物制氢技术将微生物制氢和环境治理相结合,是集污水治理和废物利用为一体的综合技术,具有广阔的应用前景,本研究为海水养殖有机废水进行微生物制氢技术发展奠定了基础。
Resumo:
With the improving of mantle convection theory, the developing of computing method and increasing of the measurement data, we can numerically simulate more clearly about the effects on some geophysical observed phenomenons such as the global heat flow and global lithospheric stress field in the Earth's surface caused by mantle convection, which is the primary mechanism for the transport of heat from the Earth's deep interior to its surface and the underlying force mechanism of dynamics in the Earth.Chapter 1 reviews the historical background and present research state of mantle convection theory.In Chapter 2, the basic conception of thermal convection and the basic theory about mantle flow.The effects on generation and distribution of global lithospheric stres s field induced by mantle flow are the subject of Chapter 3. Mantle convection causes normal stress and tangential stresses at the bottom of the lithosphere, and then the sublithospheric stress field induces the lithospheric deformation as sixrface force and results in the stress field within the lithosphere. The simulation shows that the agreement between predictions and observations is good in most regions. Most of subduction zones and continental collisions are under compressive. While ocean ridges, such as the east Pacific ridge, the Atlantic ridge and the east African rift valley, are under tensile. And most of the hotspots preferentially occur in regions where calculated stress is tensile. The calculated directions of the most compressive principal horizontal stress are largely in accord with that of the observation except for some regions such as the NW-Pacifie subduction zone and Qinghai-Tibet Plateau, in which the directions of the most compressive principal horizontal stress are different. It shows that the mantel flow plays an important role in causing or affecting the large-scale stress field within the lithosphere.The global heat flow simulation based on a kinematic model of mantle convection is given in Chapter 4. Mantle convection velocities are calculated based on the internal loading theory at first, the velocity field is used as the input to solve the thermal problem. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around midocean ridge systems can be reproduced very well. The predicted average temperature as a function of function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core-mantle boundary, the rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.In Chapter 5, the effects on present-day crustal movement in the China Mainland resulted from the mantle convection are introduced. Using a dynamic method, we present a quantitative model for the present-day crustal movement in China. We consider not only the effect of the India-Eurasia collision, the gravitational potential energy difference of the Tibet Plateau, but also the contribution of the shear traction on the bottom of the lithosphere induced by the global mantle convection. The comparison between our results and the velocity field obtained from the GPS observation shows that our model satisfactorily reproduces the general picture of crustal deformation in China. Numerical modeling results reveal that the stress field on the base of the lithosphere induced by the mantle flow is probably a considerable factor that causes the movement and deformation of the lithosphere in continental China with its eflfcet focuing on the Eastern China A numerical research on the small-scale convection with variable viscosity in the upper mantle is introduced in Chapter 6. Based on a two-dimensional model, small-scale convection in the mantle-lithosphere system with variable viscosity is researched by using of finite element method. Variation of viscosity in exponential form with temperature is considered in this paper The results show that if viscosity is strongly temperature-dependent, the upper part of the system does not take a share in the convection and a stagnant lid, which is identified as lithosphere, is formed on the top of system because of low temperature and high viscosity. The calculated surface heat flow, topography and gravity anomaly are associated well with the convection pattern, namely, the regions with high heat flow and uplift correspond to the upwelling flow, and vice versa.In Chapter 7, we give a brief of future research subject: The inversion of lateral density heterogeneity in the mantle by minimizing the viscous dissipation.