935 resultados para Two-dimensional numerical simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a dynamical model of a superfluid Fermi gas in the Bardeen-Cooper-Schrieffer regime trapped in a periodic optical lattice (OL) potential. The model is based on an equation for complex order parameter phi of the superfluid, which is derived from the relevant energy density and includes a self-repulsive term similar to phi(7/3). By means of the variational approximation (VA) and numerical simulations, we find families of stable one- and two-dimensional (I D and 2D) gap solitons (GSs) in this model. Chiefly, they are compact objects trapped in a single cell of the OL. Families of stable even and odd bound states of these GSs are also found in one dimension. A 3D GS family is constructed too, but solely within the framework of the VA. In the linear limit, the VA predicts an almost exact position of the left edge of the first band-gap in the OL-induced spectrum. The full VA provides an accurate description of families of I D and 2D fundamental GSs. We also demonstrate that a I D GS can be safely transported by an OL moving at a moderate velocity. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties for a classical particle confined inside a closed region with an elliptical-oval-like shape are studied. The dynamics of the model is made by using a two-dimensional nonlinear mapping. The phase space of the system is of mixed kind and we have found the condition that breaks the invariant spanning curves in the phase space. We have discussed also some statistical properties of the phase space and obtained the behaviour of the positive Lyapunov exponent. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of the fourth-order cumulant of Challa, Landau, and Binder is used together with the Monte Carlo histogram technique of Ferrenberg and Swendsen to study the order of the phase transitions of two-dimensional Ising systems with multispin interactions in the horizontal direction and two-body interactions in the vertical direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical simulation of the mixmaster universe serves the purpose of suggesting two kinds of results. The intrinsic time evolution, during contraction, will be seen to be nonchaotic. This is a necessary feature of relativistic cosmological models undergoing this kind of motion. The mixmaster model also provides a clue on how to define chaoticity for systems described by nonautonomous sets of differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.