935 resultados para Topologically Massive Yang-Mills
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated
Resumo:
Os Massive Open Online Courses (MOOC) consistem em cursos online abertos e, normalmente gratuitos, que permitem a inscrição de um elevado número de participantes. A adesão a esta modalidade de educação, normalmente informal, foi o principal repto para propor uma oficina de formação, totalmente online. Com esta formação pretendeu-se fornecer as competências necessárias para que professores se sentissem capacitados para criar e distribuir os seus próprios MOOC. No presente trabalho recorre-se à metodologia de estudo de caso e procura-se inicialmente apresentar, através de pesquisa bibliográfica, a revisão de literatura relativamente aos MOOC. Posteriormente, com base nos dados obtidos pela observação participante e inquérito por questionário, evidenciam-se os principais resultados da oficina de formação online “MOOC: uma tecnologia educativa de futuro.
Resumo:
We present the case of a 55-year-old man, with a self-limited febrile condition associated to polyserositis with inconclusive investigation. Bilateral pleural and pericardial effusions resolved. The peritoneal fluid loculated and was compatible with an exudate. The patient remained clinically asymptomatic. Two years later, examination revealed a palpable and painless abdominal mass, which imaging study suggested a cystic lesion. Surgical resection was performed and the histological examination revealed a mesenteric pseudocyst. Mesenteric pseudocysts are rare intra-abdominal cystic masses, mostly benign, without causing specific symptoms. Although imaging tests are useful for their differential diagnosis, the histology is mandatory.
Resumo:
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.
Resumo:
"Reference data publication."
Resumo:
The proliferation of new mobile communication devices, such as smartphones and tablets, has led to an exponential growth in network traffic. The demand for supporting the fast-growing consumer data rates urges the wireless service providers and researchers to seek a new efficient radio access technology, which is the so-called 5G technology, beyond what current 4G LTE can provide. On the other hand, ubiquitous RFID tags, sensors, actuators, mobile phones and etc. cut across many areas of modern-day living, which offers the ability to measure, infer and understand the environmental indicators. The proliferation of these devices creates the term of the Internet of Things (IoT). For the researchers and engineers in the field of wireless communication, the exploration of new effective techniques to support 5G communication and the IoT becomes an urgent task, which not only leads to fruitful research but also enhance the quality of our everyday life. Massive MIMO, which has shown the great potential in improving the achievable rate with a very large number of antennas, has become a popular candidate. However, the requirement of deploying a large number of antennas at the base station may not be feasible in indoor scenarios. Does there exist a good alternative that can achieve similar system performance to massive MIMO for indoor environment? In this dissertation, we address this question by proposing the time-reversal technique as a counterpart of massive MIMO in indoor scenario with the massive multipath effect. It is well known that radio signals will experience many multipaths due to the reflection from various scatters, especially in indoor environments. The traditional TR waveform is able to create a focusing effect at the intended receiver with very low transmitter complexity in a severe multipath channel. TR's focusing effect is in essence a spatial-temporal resonance effect that brings all the multipaths to arrive at a particular location at a specific moment. We show that by using time-reversal signal processing, with a sufficiently large bandwidth, one can harvest the massive multipaths naturally existing in a rich-scattering environment to form a large number of virtual antennas and achieve the desired massive multipath effect with a single antenna. Further, we explore the optimal bandwidth for TR system to achieve maximal spectral efficiency. Through evaluating the spectral efficiency, the optimal bandwidth for TR system is found determined by the system parameters, e.g., the number of users and backoff factor, instead of the waveform types. Moreover, we investigate the tradeoff between complexity and performance through establishing a generalized relationship between the system performance and waveform quantization in a practical communication system. It is shown that a 4-bit quantized waveforms can be used to achieve the similar bit-error-rate compared to the TR system with perfect precision waveforms. Besides 5G technology, Internet of Things (IoT) is another terminology that recently attracts more and more attention from both academia and industry. In the second part of this dissertation, the heterogeneity issue within the IoT is explored. One of the significant heterogeneity considering the massive amount of devices in the IoT is the device heterogeneity, i.e., the heterogeneous bandwidths and associated radio-frequency (RF) components. The traditional middleware techniques result in the fragmentation of the whole network, hampering the objects interoperability and slowing down the development of a unified reference model for the IoT. We propose a novel TR-based heterogeneous system, which can address the bandwidth heterogeneity and maintain the benefit of TR at the same time. The increase of complexity in the proposed system lies in the digital processing at the access point (AP), instead of at the devices' ends, which can be easily handled with more powerful digital signal processor (DSP). Meanwhile, the complexity of the terminal devices stays low and therefore satisfies the low-complexity and scalability requirement of the IoT. Since there is no middleware in the proposed scheme and the additional physical layer complexity concentrates on the AP side, the proposed heterogeneous TR system better satisfies the low-complexity and energy-efficiency requirement for the terminal devices (TDs) compared with the middleware approach.
Resumo:
The milling of thin parts is a high added value operation where the machinist has to face the chatter problem. The study of the stability of these operations is a complex task due to the changing modal parameters as the part loses mass during the machining and the complex shape of the tools that are used. The present work proposes a methodology for chatter avoidance in the milling of flexible thin floors with a bull-nose end mill. First, a stability model for the milling of compliant systems in the tool axis direction with bull-nose end mills is presented. The contribution is the averaging method used to be able to use a linear model to predict the stability of the operation. Then, the procedure for the calculation of stability diagrams for the milling of thin floors is presented. The method is based on the estimation of the modal parameters of the part and the corresponding stability lobes during the machining. As in thin floor milling the depth of cut is already defined by the floor thickness previous to milling, the use of stability diagrams that relate the tool position along the tool-path with the spindle speed is proposed. Hence, the sequence of spindle speeds that the tool must have during the milling can be selected. Finally, this methodology has been validated by means of experimental tests.
Resumo:
Insets: Zhaowa xiang tu -- Nan Yang Qun Dao di xing tu -- Malai Ban Dao xiang tu.
Resumo:
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
Resumo:
Background: Nowadays, there are very few studies about massive transfusion in our country. This situation generates the necessity to the elevation of possible new strategies to diminish mortality and its adverse effects. Material and methods: All massive transfusions were evaluated in a retrospective way from October 2010 to October 2012. All diagnosis groups were recorded and the patients were divided into three groups depending on the ratio between packed red blood cells (PRBC) and fresh frozen plasma (FFP) units (ratios ≤2, >2, and without FFP). Their mortality and/or survival were evaluated 30 days after as well as all the factors associated with the event. Results: A total of 69 patients were included (37 trauma patients, 28 gunshot wounds and 4 with lacerated wounds); the groups (ratios ≤2, >2, and no plasma at all) were distributed as follows: 30, 30 and 9 patients each, with an overall mortality rate of 60.8% within 30 days. A lower survival rate (12%) in the no plasma group (P=.015) was found and systolic blood pressure during transfusion had a mean of 67.7 mmHg (P=.012) in this group. Fresh frozen plasma units were 136 and 249 for >2 and ≤2 ratios respectively (P<.01); 85.5% of all patients developed metabolic acidosis during the transfusion, and the number of days in the hospital after the event had a mean of 24.5 days in all patients. Conclusions: High rates of massive transfusion mortality are still being reported in our ield. The use of transfusion strategies contribute to elevate the survival rate in patients with massive transfusion treatment
Resumo:
Background: It is important that the residual bowel adapts after massive resection. The necessary intestinal adaptation is a progressive recovery from intestinal failure through increase in absorptive surface area and functional capacity and includes both morphological and functional adaptations. Objectives: The aim of this study was to investigate intestinal morphological and functional adaptations of small bowel syndrome (SBS) model rats (SBS1W) 7 days after bowel resection. Materials and Methods: Male sprague–dawley rats (n = 20/group) underwent either a 75% proximal small bowel resection (SBS1W group) or a control operation (control group). Markers of morphological adaptation were revealed by TEM analysis of H&E-stained tissue samples. The intestinal barrier condition was assessed by BT, and sIgA concentration in intestinal mucus was measured by ELISA. Contractility and the slow wave rhythm of the entire intestinal remnant were measured and recorded. Results: The SBS1W group experienced more weight loss than control group and had a clearly different intestinal morphology as revealed in TEM images. Compared with control rats, the SBS1W group had a lower sIgA concentration in intestinal mucus and higher BT to lymph nodes (70% vs 40%; level I), portal blood (40% vs 10%; level II), and peripheral blood (60% vs 30%; level III). Disorder of spontaneous rhythmic contraction, irregular amplitude, and slow frequency were detected in the SBS1W group by a muscle strips test. Similarly, the slow wave of the entire intestinal remnant in the SBS1W group was irregular and uncoordinated. Conclusions: The finding of intestinal adaptation following massive SBR in SBS1W rats provides more understanding of the mechanisms of progressive recovery from the intestinal failure that underlies SBS. The mechanical, chemical, immunological, and biological barriers were all impaired at 7 days following bowel resection, indicating that the SBS model rats were still in the intestinal adaptation phase.
Resumo:
Purpose: To evaluate the cardioprotective effects and possible mechanisms of Dan-Yang-Fu-Xin decoction (DYFX) in a rat chronic heart failure (CHF). Methods: A CHF rat model induced by ligation of the left anterior descending coronary artery was used to investigate the cardioprotective effects of DYFX. After intragastric administration for 8 weeks, several functional cardiac indices, including fractional shortening (FS), ejection fraction (EF), heart rate (HR) and cardiac output (CO) were assessed by ultrasound examination. Subsequently, inflammatory markers, viz, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), myocardial enzymes, namely, lactate dehydrogenase (LDH) and creatine kinase (CK), were also assessed by enzyme-linked immunosorbent assay (ELISA). Results: Intragastric administration of DYFX (200, 400 and 600 mg/kg) significantly reversed the decrease in body weight and increase in cardiac weight (p < 0.05) induced by CHF. Treatment with DYFX also significantly reversed EF, FS, HR, and CO changes in CHF rats. In addition, DYFX inhibited the two inflammatory cytokines (TNF-α and IL-6) and myocardial enzymes (CK and LDH), suggesting that these effects may include the mechanisms of cardioprotectiion involved in attenuation of CHF. Conclusion: DYFX possesses cardioprotective effects involving CHF. The protective mechanisms may include the suppression of expression of inflammatory mediators and myocardial enzymes.
Resumo:
El objetivo fundamental es continuar con la creación de un Massive Open OnlineCourse (MOOC) de narrativa audiovisual diseñado por profesorado y alumnado elaborando materiales videográficos e hipermedia innovadores para su difusión abierta.