982 resultados para Titration
Resumo:
Interstitial water samples from Sites 834 through 839, drilled during Ocean Drilling Program Leg 135 in the backarc Lau basin (Southwestern Pacific), have been analyzed for major elements, manganese, copper, strontium, barium, vanadium, and 87Sr/86Sr isotopic composition values. The concentration-depth profiles of the major chemical components show almost straight concentration gradients at all sites, and seem to reflect slight alteration of volcanic material. However, in the lower part of the sedimentary cover, where volcanogenic material is abundant and where diagenetic minerals occur, systematic decreases in calcium, strontium, manganese, copper, and vanadium concentrations are observed. A downwelling flow of bottom seawater, which affected the diagenetic chemical signature of the interstitial water, is probably responsible for the recorded chemical features. This hypothesis is supported by strontium isotope data obtained from interstitial water samples at Site 835. It is also in accordance with data from heat flow and physical properties.
Resumo:
Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.
Resumo:
High-resolution bio- and chemostratigraphy of an earliest Pliocene section from ODP Site 652 indicates that postflood paleoceanographic conditions in the Tyrrhenian Sea can be sub-divided into two discrete intervals. The first is manifested by an acme of Sphaeroidinellopsis spp., increasing carbonate contents, and a progressive decrease upsection in both the d13C and dl8O values of the planktonic foraminifera. The lower part of the acme interval contains unusual surface-to-bottom water isotope gradients suggesting a stratification of two water masses. Normal gradients in the upper part of the acme interval suggest a well-mixed water body. Between the end of the acme interval and the MP11/MP12 boundary, denoted by the first occurrence (F.O.) of Globorotalia margaritae, a migrational first appearance, there was a catastrophic collapse of the gradient marking an onset of the second post-flood interval. The disintegration of habitable conditions is suggested by a sharp decrease in carbonate content and the disappearance of the benthonic assemblage, which is subsequently replaced predominantly by Uvigerinapygmea, indicative of cold, low-oxygenated bottom waters. The introduction of benthonic species denoting well-oxygenated bottom conditions occurs within the lower MP12 zone. Superimposed on these overall trends are shorter term, warm-cold cycles, which are interpreted as orbitally induced, climatic fluctuations. Correlative studies of the less complete earliest Pliocene sections from ODP Holes 653B and 654A confirm these interpretations. A scenario derived from an integration of all the stratigraphic data indicates that normal paleoceanographic conditions were operating in the Tyrrhenian Sea only approximately 250,000 yr after the cessation of Messinian evaporative conditions at the Miocene/Pliocene boundary. The post-flood interval is marked by an initial period of gradual infilling, the Sphaeroidinellopsis spp. acme interval, followed by a disintegration of oceanographic conditions and a second recovery period. A sudden influx of cold, deep Atlantic waters into the Tyrrhenian Sea, resulting from a major tectonic break in the Gibraltar sill, may have caused this catastrophic reversal in the orderly recovery of normal paleoceanographic conditions in the post-flood period.
Resumo:
Geological and geophysical data collected during Deep Sea Drilling Project (DSDP) Leg 70 indicate that hydrothermal solutions are upwelling through the sediments of the mounds hydrothermal field (Sites 506, 507, and 509) and downwelling in the low heat-flow zone to the south (Site 508). Pore-water data are compatible with these conclusions. Pore waters at mounds sites are enriched in Ca and depleted in Mg relative to both seawater and Site 508 pore waters. These anomalies are believed to reflect prior reaction of the interstitial waters with basement rocks. The mounds solutions are also enriched in iron, which is probably hydrothermal and en route to forming nontronite. Concentrations of Si and NH3 in mounds pore water increase upcore as a result of the addition of dissolving biogenic debris to ascending hydrothermal solutions. Some low heat-flow pore-water samples (Site 508) are enriched in Ca and depleted in Mg. These anomalies likely reflect the presence of pockets of hydrothermal solutions in areas otherwise dominated by downwelling bottom water.
Resumo:
Features of spatial variability of hydrogen sulfide in the northeastern part of the Black Sea are estimated. Some technical aspects of H2S concentration determination in the anoxic zone are discussed: in its upper part at H2S concentration <30 µmol/l, the photometric method is recommended, while for deeper layers the iodometric method should be used. With linearity of vertical distribution of hydrogen sulfide and ammonium taken into account their vertical gradients are estimated as 0.49+/-0.04 µmol/m and 0.19+/-0.06 µmol/m respectively. It is shown that the upper boundary of the H2S layer corresponds to the isopycnal surface with Sigma_t = 16.19+/-0.05 arbitrary units. Special attention is paid to relationship of hydrogen sulfide distribution with hydrophysical features in the region under study, in particular in the coastal zone. It is shown that hydrodynamic conditions control spatial distribution of hydrogen sulfide. On the basis of isopycnal treatment of the H2S field existence of a coastal convergence zone is proved, and peculiarities are recognized of vertical circulation in the main Black Sea gyre and coastal anticyclonic eddies; here hydrogen sulfide serves as a tracer of hydrophysical mixing processes.
Resumo:
Two trenches off Japan were explored during DSDP Leg 87. One is the Nankai Trough and the other is the Japan Trench; Site 582 is located on the floor of the former and Site 584 is situated on the deep-sea terrace of the latter. Cores from Site 582 and 584 consist mainly of hemipelagic sediments and diatomaceous silts and mudstone, respectively. In this report we analyze the chemistry of the interstitial water and sediments, as well as the sediment mineralogy. Sulfate reduction is accompanied by the production of secondary pyrite, which is rich in the sediment at both sites. Dissolved Ca concentration is relatively low and changes only slightly at both sites, probably because of the formation of carbonate with high alkalinity. Concentrations of dissolved Mg decrease with depth at Site 584. The dissolved Mg depletion probably results from the formation of Mg-rich carbonate and/or ion exchange and reaction between interstitial water and clay minerals. Higher Si/Al values are due to biogenic opal in the sediments and roughly correlate with higher values of interstitial water SiO2. Increases in dissolved Li concentrations may be related to its release from clay minerals, to advection that results from dewatering, and/or to fluid transport.
Resumo:
Biogeochemical cycle of methane in the Barents Sea was studied using isotope geochemistry to determine rates of microbial methane oxidation. It was established that microbiological processes (glucose consumption, 14CO2 assimilation, sulfate reduction, and slow methane oxidation) in oxidized surface and weakly reduced sediments are marked by only insignificant change in SO4 concentration and absence of notable increase of total alkalinity and N/NH4 downward sediment cores. Microbial methane productivity was 0.111x10**6 mol/day. Taking into account volume of the water column, microbial methane consumption therein can be as much as 1.8x10**6 mol/day.
Resumo:
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 µatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28-223%) at 550 µatm, 153% (56-295%) at 750 µatm and 225% (79-413%) at 1000 µatm), and decreases in DMSP concentrations (28% (18-40%) at 550 µatm, 44% (18-64%) at 750 µatm and 52% (24-72%) at 1000 µatm). Significant decreases in DMSP synthesis rate constants (µDMSP /d) and DMSP production rates (nmol/d) were observed in two experiments (7-90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.