973 resultados para Tissue Inhibitor of Metalloproteinases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) is a non-invasive method of estimating the haemoglobin concentration changes in certain tissues. It is frequently used to monitor oxygenation of the brain in neonates. At present it is not clear whether near infrared spectroscopy of other organs (e.g. the liver as a corresponding site in the splanchnic region, which reacts very sensitively to haemodynamic instability) provides reliable values on their tissue oxygenation. The aim of the study was to test near infrared spectroscopy by measuring known physiologic changes in tissue oxygenation of the liver in newborn infants during and after feeding via a naso-gastric tube. The test-retest variability of such measurements was also determined. On 28 occasions in 25 infants we measured the tissue oxygenation index (TOI) of the liver and the brain continuously before, during and 30 minutes after feeding via a gastric tube. Simultaneously we measured arterial oxygen saturation (SaO2), heart rate (HR) and mean arterial blood pressure (MAP). In 10 other newborn infants we performed a test-retest analysis of the liver tissue oxygenation index to estimate the variability in repeated intra-individual measurements. The tissue oxygenation index of the liver increased significantly from 56.7 +/- 7.5% before to 60.3 +/- 5.6% after feeding (p < 0.005), and remained unchanged for the next 30 minutes. The tissue oxygenation index of the brain (62.1 +/- 9.7%), SaO2 (94.4 +/- 7.1%), heart rate (145 +/- 17.3 min-1) and mean arterial blood pressure (52.8 +/- 10.2 mm Hg) did not change significantly. The test-retest variability for intra-individual measurements was 2.7 +/- 2.1%. After bolus feeding the tissue oxygenation index of the liver increased as expected. This indicates that near infrared spectroscopy is suitable for monitoring changes in tissue oxygenation of the liver in newborn infants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distinct Toxoplasma gondii antigens were entrapped within liposomes and evaluated for their ability to protect Balb/c mice against congenital transmission: soluble tachyzoite antigen (L/STAg), soluble tissue cyst antigen (L/SCAg), soluble tachyzoite plus tissue cyst (L/STCAg) or purified 32kDa antigen of tachyzoite (L/pTAg). Soluble tachyzoite antigen alone in PBS (STAg) or emulsified in Freund's Complete Adjuvant (FCA/STAg) was also evaluated. Dams were inoculated subcutaneously with these antigens 6, 4 and 2 weeks prior to a challenge with four tissue cysts of the P strain of T. gondii orally between 10 and 14 days of pregnancy. Significant diminution differences were observed between the frequency of infected pups born of the dams immunized with the antigens incorporated into liposomes and that of pups born of the dams immunized with antigen emulsified in FCA or non immunized group (p<0.05). There was a significant decrease in the number of pups born dead in the groups L/STAg, L/SCAg and L/pTAg when compared with pups from all other groups (p <0.05). All dams immunized with or without adjuvant showed an antibody response and a proliferation of T-cells. However, no correlation was found between immune response and protection against the challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The induction of proteinase inhibitor I synthesis in tomato (Lycopersicon esculentum) leaves in response to wounding is strongly inhibited by diethyldithiocarbamic acid (DIECA). DIECA also inhibits the induction of inhibitor I synthesis by the 18-amino acid polypeptide systemin, polygalacturonic acid (PCA), and linolenic acid, but not by jasmonic acid, suggesting that DIECA interferes with the octadecanoid signaling pathway. DIECA only weakly inhibited tomato lipoxygenase activity, indicating that DIECA action occurred at a step after the conversion of linolenic acid to 13(S)-hydroperoxylinolenic acid (HPOTrE). DIECA was shown to efficiently reduce HPOTrE to 13-hydroxylinolenic acid (HOTrE), which is not a signaling intermediate. Therefore, in vivo, DIECA is likely inhibiting the signaling pathway by shunting HPOTrE to HOTrE, thereby severely reducing the precursor pool leading to cyclization and eventual synthesis of jasmonic acid. Phenidone, an inhibitor of lipoxygenase, inhibited proteinase inhibitor I accumulation in response to wounding, further supporting a role for its substrate, linolenic acid, and its product, HPOTrE, as components of the signal-transduction pathway that induces proteinase inhibitor synthesis in response to wounding, systemin, and PCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catopril, an inhibitor of angiotensin converting enzyme, was given orally during cardiac catheterisation to 6 normotensive patients with refractory congestive heart-failure. 60--180 minutes after administration of 25 mg captopril, arterial pressure fell by 25%, cardiac index rose by 38%, and left-ventricular pressure and right-atrial pressure fell by 25% and 40% respectively. Plasma-renin activity rose while plasma noradrenaline and aldosterone fell. These data suggest that, in the short term, captopril can reduce both preload and afterload, and improve cardiac function, in refractory congestive heart-failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the effects of two agents depleting the intracellular pool of glutathione (GSH) on macrophage activation induced by IFN-gamma + LPS, as measured by nitrite production and leishmanicidal activity. Diethylmaleate (DEM), which depletes intracellular GSH by conjugation via a reaction catalyzed by the GSH-S-transferase, strongly inhibited nitrite secretion and leishmanicidal activity when added before or at the time of addition of IFN-gamma + LPS; this inhibition was progressively lost when addition of DEM was delayed up to 10 hr. A close correlation was observed between levels of intracellular soluble GSH during activation and nitrite secretion. Inhibition was partially reversed by the addition of glutathione ethyl ester (GSH-Et). Buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine synthetase, also inhibited macrophage activation, although to a lesser extent than DEM despite a more pronounced soluble GSH depletion. This inhibition was completely reversed by the addition of GSH-Et. DEM and BSO did not alter cell viability or PMA-triggered O2- production by activated macrophages, suggesting that the inhibitory effects observed on nitrite secretion and leishmanicidal activity were not related to a general impairment of macrophage function. DEM and BSO treatment reduced iNOS specific activity and iNOS protein in cytosolic extracts. DEM also decreased iNOS mRNA expression while BSO had no effect. Although commonly used as a GSH-depleting agent, DEM may have additional effects because it can also act as a sulhydryl reagent; BSO, on the other hand, which depletes GSH by enzymatic inhibition, has no effect on protein-bound GSH. Our results suggest that both soluble and protein-bound GSH may be important for the induction of NO synthase in IFN-gamma + LPS-activated macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVEIncrease in adipose cAMP response binding protein (CREB) activity promotes adipocyte dysfunction and systemic insulin resistance in obese mice. This is achieved by increasing the expression of activating transcription factor 3 (ATF3). In this study we investigated whether impaired expression of the inducible cAMP early repressor (ICER), a transcriptional antagonist of CREB, is responsible for the increased CREB activity in adipocytes of obese mice and humans.RESEARCH DESIGN AND METHODSTotal RNA and nuclear proteins were prepared from visceral adipose tissue (VAT) of human nonobese or obese subjects, and white adipose tissue (WAT) of C57Bl6-Rj mice that were fed with normal or high-fat diet for 16 weeks. The expression of genes was monitored by real-time PCR, Western blotting, and electromobility shift assays. RNA interference was used to silence the expression of Icer.RESULTSThe expression of Icer/ICER was reduced in VAT and WAT of obese humans and mice, respectively. Diminution of Icer/ICER was restricted to adipocytes and was accompanied by a rise of Atf3/ATF3 and diminution of Adipoq/ADIPOQ and Glut4/GLUT4. Silencing the expression of Icer in 3T3-L1 adipocytes mimicked the results observed in human and mice cells and hampered glucose uptake, thus confirming the requirement of Icer for appropriate adipocyte function.CONCLUSIONSImpaired expression of ICER contributes to elevation in CREB target genes and, therefore, to the development of insulin resistance in obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Dose reduction may compromise patients because of a decrease of image quality. Therefore, the amount of dose savings in new dose-reduction techniques needs to be thoroughly assessed. To avoid repeated studies in one patient, chest computed tomography (CT) scans with different dose levels were performed in corpses comparing model-based iterative reconstruction (MBIR) as a tool to enhance image quality with current standard full-dose imaging. MATERIALS AND METHODS: Twenty-five human cadavers were scanned (CT HD750) after contrast medium injection at different, decreasing dose levels D0-D5 and respectively reconstructed with MBIR. The data at full-dose level, D0, have been additionally reconstructed with standard adaptive statistical iterative reconstruction (ASIR), which represented the full-dose baseline reference (FDBR). Two radiologists independently compared image quality (IQ) in 3-mm multiplanar reformations for soft-tissue evaluation of D0-D5 to FDBR (-2, diagnostically inferior; -1, inferior; 0, equal; +1, superior; and +2, diagnostically superior). For statistical analysis, the intraclass correlation coefficient (ICC) and the Wilcoxon test were used. RESULTS: Mean CT dose index values (mGy) were as follows: D0/FDBR = 10.1 ± 1.7, D1 = 6.2 ± 2.8, D2 = 5.7 ± 2.7, D3 = 3.5 ± 1.9, D4 = 1.8 ± 1.0, and D5 = 0.9 ± 0.5. Mean IQ ratings were as follows: D0 = +1.8 ± 0.2, D1 = +1.5 ± 0.3, D2 = +1.1 ± 0.3, D3 = +0.7 ± 0.5, D4 = +0.1 ± 0.5, and D5 = -1.2 ± 0.5. All values demonstrated a significant difference to baseline (P < .05), except mean IQ for D4 (P = .61). ICC was 0.91. CONCLUSIONS: Compared to ASIR, MBIR allowed for a significant dose reduction of 82% without impairment of IQ. This resulted in a calculated mean effective dose below 1 mSv.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weaning Swiss mice were percutaneously infected with 30 cercariae of Schistosoma mansoni and submitted to a shifting either from a deficient to a balanced diet or vice-versa, for 24 weeks. The nutritional status was weekly evaluated by measurements of growth curves and food intake. Hepatic fibrosis and periovular granulomas were studied by histological, morphometric and biochemical methods. All mice fed on a deficient diet failed to develop periportal "pipestem" fibrosis after chronic infection. An unexpected finding was the absence of pipestem fibrosis in mice on normal diet, probably related to the sample size. The lower values for nutritional parameters were mainly due to the deficient diet, rather than to infection. Liver/body weight ratio was higher in "early undernutrition" group, after shifting to the balanced diet. Volume density and numerical density of egg granulomas reached lowest values in undernourished animals. The amount of collagen was reduced in undernourished mice, attaining higher concentrations in well-fed controls and in "late undernutrition" (balanced diet shifted to a deficient one), where collagen deposition appeared increased in granulomas. That finding suggested interference with collagen degradation and resorption in "late" undernourished animals. Thus, host nutritional status plays a role in connective tissue changes of hepatic schistosomiasis in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 103 isolates of basidiomycetes, representing 84 species from different Brazilian ecosystems, were evaluated for their antifungal and antibacterial activity in a panel of pathogenic and non-pathogenic microorganisms. Tissue plugs of the fruiting bodies were cultivated in liquid media and the whole culture extracted with ethyl acetate. Crude extracts from Agaricus cf. nigrecentulus, Agrocybe perfecta, Climacodon pulcherrimus, Gloeoporus thelephoroides, Hexagonia hydnoides, Irpex lacteus, Leucoagaricus cf. cinereus, Marasmius cf. bellus, Marasmius sp., Nothopanus hygrophanus, Oudemansiella canarii, Pycnoporus sanguineus, Phellinus sp., and Tyromyces duracinus presented significant activity against one or more of the target microorganisms. Eight isolates were active only against bacteria while three inhibited exclusively the growth of fungi. Two extracts presented wide antimicrobial spectrum and were active against both fungi and bacteria. Differences in the bioactivity of extracts obtained from isolates from the same species were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment of some cancer patients has shifted from traditional, non-specific cytotoxic chemotherapy to chronic treatment with molecular targeted therapies. Imatinib mesylate, a selective inhibitor of tyrosine kinases (TKIs) is the most prominent example of this new era and has opened the way to the development of several additional TKIs, including sunitinib, nilotinib, dasatinib, sorafenib and lapatinib, in the treatment of various hematological malignancies and solid tumors. All these agents are characterized by an important inter-individual pharmacokinetic variability, are at risk for drug interactions, and are not devoid of toxicity. Additionally, they are administered for prolonged periods, anticipating the careful monitoring of their plasma exposure via Therapeutic Drug Monitoring (TDM) to be an important component of patients' follow-up. We have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 100 microL of plasma for the simultaneous determination of the six major TKIs currently in use. Plasma is purified by protein precipitation and the supernatant is diluted in ammonium formate 20 mM (pH 4.0) 1:2. Reverse-phase chromatographic separation of TKIs is obtained using a gradient elution of 20 mM ammonium formate pH 2.2 and acetonitrile containing 1% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 20 min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<9.6%), overall process efficiency (87.1-104.2%), as well as TKIs short- and long-term stability in plasma. The method is precise (inter-day CV%: 1.3-9.4%), accurate (-9.2 to +9.9%) and sensitive (lower limits of quantification comprised between 1 and 10 ng/mL). This is the first broad-range LC-MS/MS assay covering the major currently in-use TKIs. It is an improvement over previous methods in terms of convenience (a single extraction procedure for six major TKIs, reducing significantly the analytical time), sensitivity, selectivity and throughput. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of the latest TKIs developed after imatinib and better define their therapeutic ranges in different patient populations in order to evaluate whether a systematic TDM-guided dose adjustment of these anticancer drugs could contribute to minimize the risk of major adverse reactions and to increase the probability of efficient, long lasting, therapeutic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis or programmed cell death is a regulated form of cell suicide executed by cysteine proteases, or "caspases", to maintain proper tissue homeostasis in multicellular organisms. Dysregulation of apoptosis leads to pathological complications including cancer, autoimmunity, neurodegenerative, and heart diseases. Beside their known function as the key executioners of apoptotic cell death, caspases were reported to mediate non-apoptotic functions. In this report we study the survival signals conveyed through caspase-3-mediated cleavage of Ras GTPase-activating proteins (RasGAP). Ubiquitously expressed, RasGAP senses caspase activity and controls the cell death/survival switch. RasGAP is cleaved once at low caspase activity and the generated N-terminal fragment (fragment N) induces a survival response by activating Ras/PI3K/Akt pathway. However, high caspase activity associated with increased stress leads to fragment Ν cleavage into fragments that do not mediate any detectable survival signals. In this thesis project we studied the role of fragment Ν in protecting stressed organs as well as in maintenance of their functionality. In response to stress in different organs, we found that mice lacking caspase-3 or unable to cleave RasGAP (Knock-In mice), and therefore unable to generate fragment N, were deficient in Akt activation and experienced increased apoptosis compared to wild-type mice. Augmented tissue damage and organ dysfunction in those mice highlight the importance of fragment Ν in activating Akt-mediated prosurvival pathway and in protection of organs during episodes of stress. In parallel we investigated the role of fragment Ν in regulating the activation of transcription factor NF-kB, a master regulator of inflammation. Sustained NF-kB activation may be detrimental by directly causing apoptosis or leading to a persistent damaging inflammation response. We found that fragment Ν is a potent inhibitor of NF-kB by favoring its nuclear export. Therefore, fragment Ν regulates NF-kB activity and contributes to a controlled response as well as maintenance of homeostasis in stressed cells. Importantly, these findings introduce new insights of how activated caspase-3 acts as a stress intensity sensor that controls cell fate by either initiating a fragment N- dependent cell resistance program or a cell suicide response. This identifies the pivotal role of fragment Ν in protection against patho-physiological damage, and encourages the development of therapies which aim to increase cell resistance to vigorous treatment. - L'apoptose, ou mort cellulaire programmée, est une forme contrôlée de suicide cellulaire exécuté par des protéines appelées caspases, dans le but de maintenir l'homéostasie des tissus sains dans les organismes multicellulaires. Un mauvais contrôle de l'apoptose peut mener à des pathologies comme le cancer, la neurodégénération et les maladies cardiaques et auto-immunes. En dehors de leur rôle connu d'exécutrices de l'apoptose, les caspases ont aussi été identifiées dans d'autres contextes non-apoptotiques. Dans ce projet, nous avons étudié les signaux de survie émis par le résultat du clivage de RasGAP par la caspase-3. Exprimée de façon ubiquitaire, RasGAP est sensible à l'activité de caspase-3 et contrôle la décision de la cellule à entreprendre la mort ou la survie cellulaire. A un taux d'activité faible, la caspase-3 clive RasGAP, ce qui mène à la génération d'un fragment N-terminal, appelé Fragment N, qui induit des signaux de survie via l'activation de la cascade Ras/PI3K/Akt. Cependant, lorsque l'activité de la caspase-3 augmente, le fragment N est clivé, ce qui a pour effet d'éliminer ces signaux de survie. Dans ce travail, nous avons étudié le rôle du Fragment N dans la protection des organes en état de stress et dans le maintien de leur fonctionnalité. En réponse à certains stress, nous avons découvert que les organes de souris n'exprimant pas la caspase-3 ou alors incapables de cliver RasGAP (souris Kl), et de ce fait n'ayant pas la possibilité de générer le Fragment N, perdaient leur faculté d'activer la protéine Akt et démontraient un taux d'apoptose plus élevé que des organes de souris sauvages. Le fait que les organes et tissus de ces souris manifestaient de graves dommages et dysfonctions met en évidence l'importance du Fragment N dans l'activation des signaux de survie via la protéine Akt et dans la neutralisation de l'apoptose induite par la caspase-3. En parallèle, nous avons investigué le rôle du Fragment N dans la régulation de l'activation de NF-kB, un facteur de transcription clé dans l'inflammation. Une activation soutenue de NF-kB peut être délétère par activation directe de l'apoptose ou peut mener à une réponse inflammatoire persistante. Nous avons découvert que le Fragment N, en favorisant l'export de NF-kB depuis le noyau, était capable de l'inhiber très efficacement. Le Fragment N régule donc l'activité de NF-kB et contribue au maintien de l'homéostasie dans des cellules stressées. Ces découvertes aident, de façon importante, à la compréhension de comment l'activation de la caspase-3 agit comme senseur de stress et décide du sort de la cellule soit en initiant une protection par le biais du fragment N, ou en induisant un suicide cellulaire. Cette étude définit le Fragment Ν comme ayant un rôle de pivot dans la protection contre des dommages patho-physiologiques, et ouvre des perspectives de développement de thérapies qui cibleraient à augmenter la résistance à divers traitements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tubulointerstitial inflammation is a common feature of renal diseases. We have investigated the relationship between inflammation and Na(+) transport in the collecting duct (CD) using the mCCD(cl1) and mpkCDD(cl4) principal cell models. Lipopolysaccharide (LPS) decreased basal and aldosterone-stimulated amiloride-sensitive transepithelial current in a time-dependent manner. This effect was associated with a decrease in serum and glucocorticoid-regulated kinase 1 (SGK1) mRNA and protein levels followed by a decrease in epithelial sodium channel (ENaC) alpha-subunit mRNA levels. The LPS-induced decrease in SGK1 expression was confirmed in isolated rat CD. This decreased expression of either SGK1 or the ENaC alpha-subunit was not due to enhanced degradation of mRNA. In contrast, LPS inhibited transcriptional activity of the SGK1 promoter measured by luciferase-reporter gene assay. The effect of LPS was not mediated by inhibition of mineralocorticoid or glucocorticoid receptor, because expression of both receptors was unchanged and blockade of either receptor by spironolactone or RU486, respectively, did not prevent the down-regulation of SGK1. The effect of LPS was mediated by the canonical NF-kappaB pathway, as overexpression of a constitutively active mutant, IKKbeta (inhibitor of nuclear factor kappaB kinase-beta) decreased SGK1 mRNA levels, and knockdown of p65 NF-kappaB subunit by small interfering RNA increased SGK1 mRNA levels. Chromatin immunoprecipitation showed that LPS increased p65 binding to two NF-kappaB sites along the SGK1 promoter. In conclusion, we show that activation of the NF-kappaB pathway down-regulates SGK1 expression, which might lead to decreased ENaC alpha-subunit expression, ultimately resulting in decreased Na(+) transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.