943 resultados para Time-Fractional Diffusion-Wave Problem
Resumo:
We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.
Resumo:
The efficiency of four Sanitizers - peracetic acid, chlorhexidine, quaternary ammonium, and organic acids - was tested in this work using different bacteria recognized as a problem to meat industry, Salmonella sp., S. aureus, E. coli and L. monocytogenes. The effects of sanitizer concentration (0.2, 0.5, 0.6, 1.0, 1.1 and 1.4%), at different temperatures (10 and 45 °C) and contact time (2, 10, 15, 18 and 25 minutes) were evaluated. Tests in an industrial plant were also carried out considering previously obtained results. In a general way, peracetic acid presented higher efficiencies using low concentration (0.2%) and contact time (2 minutes) at 10 °C. The tests performed in industrial scale showed that peracetic acid presented a good performance in concentration and contact time lower than that suggested by the suppliers. The use of chlorhexidine and quaternary ammonium led to reasonable results at the indicated conditions, and organic acids were ineffective under concentration and contact time higher than those indicated by the suppliers in relation to Staphylococcus aureus. The results, in general, show that the choice for the most adequate sanitizer depends on the microorganism contaminant, the time available for sanitizer application, and also on the process cost.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
The objective of this study is to understand why virtual knowledge workers conduct autonomous tasks and interdependent problem solving tasks on virtual platforms. The study is qualitative case study including three case organizations that tap the knowledge of expert networks, and utilize virtual platforms in the work processes. Research data includes 15 interviews, that is, five experts from each case company. According to the findings there are some specific characteristics in motivation to work on tasks on online platforms. Autonomy, self-improvement, meaningful tasks, knowledge sharing, time management, variety of contacts, and variety of tasks, and projects motivate virtual knowledge workers. Factors that may enhance individuals’ engagement to work on tasks are trust, security of continuous task flow and income, feedback, meaningful tasks and tasks that contribute to self-improvement, flexibility and effectiveness in time management, and virtual tools that support social interaction. The results also indicate that there are some differences in individuals’ motivation based on the tasks’ nature. That is, knowledge sharing and variety of contacts motivated experts who worked on interdependent problem solving tasks. Then again, autonomy and variety of tasks motivated experts who worked on autonomous tasks.
Resumo:
Currency is something people deal with every day in their lives. The contemporary society is very much revolving around currencies. Even though technological development has been rapid, the principle of currency has stayed relatively unchanged for a long time. Bitcoin is a digital currency that introduced an alternative to other digital currencies, and to the traditional physical currencies. Bitcoin is peer-to-peer, open source, and it erases the need of a third party in transactions. Bitcoin has since inception gained certain fame, but it has not established itself as a common currency in the world. The purpose of this study was to analyse what kind of potential does Bitcoin have to become a widely accepted currency in day-to-day transactions. The main research question was divided into three sub questions: • What kind of a process is the diffusion of new innovations? • What kinds of factors speak for the wider adoption of Bitcoin? • What kinds of factors speak against the wider adoption of Bitcoin? The purpose of the study was approached by having diffusion of innovations as the theoretical framework. The four elements in diffusion of innovations are, innovation, communication, time, and social system. The theoretical framework is applied to Bitcoin, and the research questions answered by analysing Bitcoin’s potential diffusion prospects. The body of research data consisted of media texts and statistics. In this study, content analysis was the research method. The main findings of the study are that Bitcoin has clear strengths, but it faces a large amount of uncertainty. Bitcoin’s strong areas are the transactions. They are fast, easy, and cheap. From the innovation diffusion perspective Bitcoin is still relatively unknown, and the general public’s attitudes towards it are sceptical. The research findings purport that Bitcoin has potential demand especially when the financial system of a region is dysfunctional, or when there is a financial crisis. Bitcoin is not very trusted, and the majority of people do not see a reason to start using Bitcoin in the future. A large number of people associate it with illegal activities. In general people are largely unaware of what Bitcoin is or what are the strengths and weaknesses. Bitcoin is an innovative alternative currency. However, unless people see a major need for Bitcoin due to a financial crisis, or dysfunctionality in the financial system, Bitcoin will not become much more widespread as it is today. Bitcoin’s underlying technology can be harnessed to multiple uses. Developments in that field in the future are something that future researchers could look into.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.
Resumo:
We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.
Resumo:
The thesis assesses the impact of international factors on relations between Greek and Turkish Cypriots during and after the Cold War. Through an analysis of the Cyprus problem it explores both why external actors intervene in communal conflicts and how they influence relations between ethnic groups in plural societies. The analytical framework employed throughout the study draws on contributions of International Relations theorists and students of ethnic conflict. The thesis argues that, as in the global political system, relations between ethnic groups in unranked communal systems are anarchic; that is, actors within the system do not recognize a sovereign political authority. In bipolar communal systems dominated by two relatively equal groups, the struggle for security and power often leads to appeals for assistance from external actors. The framework notes that neighboring states and Great Powers may heed calls for assistance, or intervene without a prior request, if it is in their interest to do so. The convergence of regional and global interests in communal affairs exacerbates ethnic conflicts and precludes the development of effective political institutions. The impact of external intervention in ethnic conflicts has the potential to alter the basis of communal relations. The Cyprus problem is examined both during and after the Cold War in order to gauge how global and regional actors and the structure of their respective systems have affected relations between ethnic groups in Cyprus. The thesis argues that Cyprus's descent into civil war in 1963 was due in part to the entrenchment of external interests in the Republic's constitution. The study also notes that power politics involving the United States, Soviet Union, Greece and Turkey continued to affect the development of communal relations throughout the 1960s, 70s, and, 80s. External intervention culminated in July and August 1974, after a Greek sponsored coup was answered by Turkey's invasion and partition of Cyprus. The forced expulsion of Greek Cypriots from the island's northern territories led to the establishment of ethnically homogeneous zones, thus altering the context of communal relations dramatically. The study also examines the role of the United Nations in Cyprus, noting that its failure to settle the dispute was due in large part to a lack of cooperation from Turkey, and the United States' and Soviet Union's acceptance of the status quo following the 1974 invasion and partition of the island. The thesis argues that the deterioration of Greek-Turkish relations in the post-Cold War era has made a solution to the dispute unlikely for the time being. Barring any dramatic changes in relations between communal and regional antagonists, relations between Greek and Turkish Cypriots will continue to develop along the lines established in July/August 1974. The thesis concludes by affirming the validity of its core hypotheses through a brief survey of recent works touching on international politics and ethnic conflict. Questions requiring further research are noted as are elements of the study that require further refinement.
Resumo:
Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.
Resumo:
Forty grade 9 students were selected from a small rural board in southern Ontario. The students were in two classes and were treated as two groups. The treatment group received instruction in the Logical Numerical Problem Solving Strategy every day for 37 minutes over a 6 week period. The control group received instruction in problem solving without this strategy over the same time period. Then the control group received the treat~ent and the treatment group received the instruction without the strategy. Quite a large variance was found in the problem solving ability of students in grade 9. It was also found that the growth of the problem solving ability achievement of students could be measured using growth strands based upon the results of the pilot study. The analysis of the results of the study using t-tests and a MANOVA demonstrated that the teaching of the strategy did not significaritly (at p s 0.05) increase the problem solving achievement of the students. However, there was an encouraging trend seen in the data.
Resumo:
Several recent studies have described the period of impaired alertness and performance known as sleep inertia that occurs upon awakening from a full night of sleep. They report that sleep inertia dissipates in a saturating exponential manner, the exact time course being task dependent, but generally persisting for one to two hours. A number of factors, including sleep architecture, sleep depth and circadian variables are also thought to affect the duration and intensity. The present study sought to replicate their findings for subjective alertness and reaction time and also to examine electrophysiological changes through the use of event-related potentials (ERPs). Secondly, several sleep parameters were examined for potential effects on the initial intensity of sleep inertia. Ten participants spent two consecutive nights and subsequent mornings in the sleep lab. Sleep architecture was recorded for a fiiU nocturnal episode of sleep based on participants' habitual sleep patterns. Subjective alertness and performance was measured for a 90-minute period after awakening. Alertness was measured every five minutes using the Stanford Sleepiness Scale (SSS) and a visual analogue scale (VAS) of sleepiness. An auditory tone also served as the target stimulus for an oddball task designed to examine the NlOO and P300 components ofthe ERP waveform. The five-minute oddball task was presented at 15-minute intervals over the initial 90-minutes after awakening to obtain six measures of average RT and amplitude and latency for NlOO and P300. Standard polysomnographic recording were used to obtain digital EEG and describe the night of sleep. Power spectral analyses (FFT) were used to calculate slow wave activity (SWA) as a measure of sleep depth for the whole night, 90-minutes before awakening and five minutes before awakening.
Resumo:
The purpose of this study was to replicate and extend a motivational model of problem drinking (Cooper, Frone, Russel, & Mudar, 1995; Read, Wood, Kahler, Maddock & Tibor, 2003), testing the notion that attachment is a common antecedent for both the affective and social paths to problem drinking. The model was tested with data from three samples, first-year university students (N=679), students about to graduate from university (N=206), and first-time clients at an addiction treatment facility (N=21 1). Participants completed a battery of questionnaires assessing alcohol use, alcohol-related consequences, drinking motives, peer models of alcohol use, positive and negative affect, attachment anxiety and attachment avoidance. Results underscored the importance of the affective path to problem drinking, while putting the social path to problem drinking into question. While drinking to cope was most prominent among the clinical sample, coping motives served as a risk factor for problem drinking for both individuals identified as problem drinkers and university students. Moreover, drinking for enhancement purposes appeared to be the strongest overall predictor of alcohol use. Results of the present study also supported the notion that attachment anxiety and avoidance are antecedents for the affective path to problem drinking, such that those with higher levels of attachment anxiety and avoidance were more vulnerable to experiencing adverse consequences related to their drinking, explained in terms of diminished affect regulation. Evidence that nonsecure attachment is a potent predictor of problem drinking was also demonstrated by the finding that attachment anxiety was directly related to alcohol-related consequences over and above its indirect relationship through affect regulation. However, results failed to show that attachment anxiety or attachment avoidance increased the risk of problem drinking via social influence.
Resumo:
Hub location problem is an NP-hard problem that frequently arises in the design of transportation and distribution systems, postal delivery networks, and airline passenger flow. This work focuses on the Single Allocation Hub Location Problem (SAHLP). Genetic Algorithms (GAs) for the capacitated and uncapacitated variants of the SAHLP based on new chromosome representations and crossover operators are explored. The GAs is tested on two well-known sets of real-world problems with up to 200 nodes. The obtained results are very promising. For most of the test problems the GA obtains improved or best-known solutions and the computational time remains low. The proposed GAs can easily be extended to other variants of location problems arising in network design planning in transportation systems.
Resumo:
Cardiovascular disease is a leading cause of mortality in the spinal cord injured (SCI) population. Reduced arterial compliance is a cardiovascular risk factor and whole body vibration (WBV) has be en shown to improve arterial compliance in able-bodied individuals. The study investigated the effect of an acute session ofWBV on arterial compliance as measured by pulse wave velocity (PWV). On separate days, arm, leg and aortic PWV were measured pre- and post- a 45 minute session of passive stance (PS) and WBV. The WBV was intermittent with a set frequency of 45Hz and amplitude of O.6mm. There was no condition by time effect when comparing PWV after WBV and PS. Following WBV, aortic (928.6±127.7 vs. 901.1±96.6cm/sec), leg (1035.2±113.8 vs.l099.8±114.2cm/sec) and arm PWV (1118.9±119.8 vs. 1181.1±124.4cm/s) did not change. As such, WBV did not reduce arterial compliance, however future research with protocol modifications is recommended.
Resumo:
Fermi patches in quasi-two dimensional charge density waves (CDW) have not described the connection to superconductivity (SC) according to theory adequately at this point in time. The connection between CDW and SC in the quasi-two dimensional material CuxTiSe2 is an interesting one which might reveal mechanisms in unconventional superconductors. A previous Brock graduate student grew crystals of CuxTiSe2. The precise doping of the samples was not known. In order to determine the doping parameter x in CuxTiSe2, a sensitive resistivity measurement system was necessary. A new resistivity measurement system was designed and implemented utilizing an Infrared Labs HDL-10 He3 cryostat. By comparing with data from the literature, doping of two samples was investigated using the new measurement system and a Quantum Design Magnetic Property Measurement System (MPMS). Methods for determining the doping revealed that the old resistivity system would not be able to determine the CDW transition temperature of highly doped samples or doping for elongated samples due to electronic noise. Doping in one sample was found to be between x=0.06 and x=0.065. Values of doping in the second sample had a discrepancy but could be explained by incorrect sample orientation.