758 resultados para TiO2-SnO2 composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suspensions of undoped SnO2 nanoparticles and containing Eu3+ ions were prepared by a sol-gel procedure. Using the classical synthesis method ( precipitation), the particles tend to grow by a coarsening process in order to minimize the surface free energy. This effect can strongly be reduced by the addition of an amide and surfactant during the synthesis, which decreases the surface free energy of the colloidal particles. These additives promote the formation of powders composed of very small primary particles formed by a crystallite of 10 Angstrom, and exhibit good redispersion properties. The local and long order structures of the redispersible powder were studied by X-rays absorption spectroscopy at Sn L-I edge and X-rays diffraction, respectively. The structure of the colloidal aggregates in suspension was investigated by small angle X-rays scattering (SAXS). SAXS results indicate the sol are composed by a polidisperse system of hard spheres resulting of agglomeration of the primary particles and their size increasing by agglomeration for progressively higher Eu3+ content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoconductivity of SnO2 sol-gel films is excited, at low temperature, by using a 266 nm line-fourth harmonic-of a Nd:YAG laser. This line has above bandgap energy and promotes generation of electron-hole pairs, which recombines with oxygen adsorbed at grain boundary. The conductivity increases up to 40 times. After removing the illumination on an undoped SnO2 film, the conductivity remains unchanged, as long as the temperature is kept constant. Adsorbed oxygen ions recombine with photogenerated holes and are continuously evacuated from the system, leaving a net concentration of free electrons into the material, responsible for the increase in the conductivity. For Er doped SnO2, the excitation of conductivity by the laser line has similar behavior, however after removing illumination, the conductivity decreases with exponential-like decay. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius Parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 W mol(-1), the pre-exponential factor, A, was 2.04.10(10) min(-1) and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work presents results on natural sintering of tin dioxide ceramics, prepared by a chemical route or by conventional mixing and containing manganese (X-Mn = Mn/(Mn + Sn)(atomic) with 0 less than or equal to X(Mn)less than or equal to 0.15). This cation, which is practically insoluble in SnO2 network, stays at the grain surface. During thermal treatment (500 degrees C less than or equal to T-s less than or equal to 1400 degrees C), as long as the manganese surface concentration is lower than a critical value, equal to 5.10(-6) mol m(-2), no densification takes place. As soon as this value is reached, densification and grain growth occur simultaneously. The shrinkage kinetics is fast and high rho/rho(t) values can be obtained (for example. rho/rho(t)=0.95 for T-s=1300 degrees C and X-Mn=0.004). The dependence between manganese content, manganese distribution, grain size and sintering behaviour is also discussed. (C) 1998 Published by Elsevier B.V. Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The colloidal route of the sol-gel process was used to prepare supported SnO2 membranes. The influence of the sol and monoelectrolyte concentrations on the formation of the gel layer by sol-casting on the top of macroporous alpha-Al2O3 support was described. The stability of the colloidal suspension as a function of the concentrations was analyzed from creep-recovery measurements. The calcined supported membranes were characterized by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The set of results show that homogeneous membrane layers containing the smallest quantity of cracks are formed in a critical interval of sol (1.01 less than or equal to[SnO2]less than or equal to 1.4 M) and electrolyte (2.O less than or equal to[Cl-]less than or equal to 4.0 mM) concentrations. The samples prepared from concentrated suspensions present a lot of interconnected cracks which favors the peeling of the coated layer. The membranes have pores of average diameter of about 1 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sintering process of nanometric undoped SnO2 powder was studied. No macroscopic shrinkage was observed during the sintening process. Grain growth kinetics investigation showed that surface diffusion is the dominant mechanism in the temperature range 500-1300 degreesC. For temperatures higher than 1300 degreesC, high weight loss was measured, suggesting evaporation-condensation as the dominant mass-transport mechanism. Thermogravimetric analysis (TG) and mass spectroscopy studies showed that the surface contamination of the SnO2 particles by chemical species like H2O, OH- and CO2, has a strong influence on the role of mass transport controlled by surface diffusion. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent SnO2: x%mol Er3+ (x=0.1-2.0) thin films have been spin coated on borosilicate and silica substrates from water colloidal suspensions that could be prepared containing up to 40% in weight SnO2 nanocrystalline powders. High Resolution Transmission Electron Microscopy results show the well known SnO2 cassiterite structure and nanocrystallites around 10 nm in diameter, corroborating results from X-ray diffraction. Mono and multi layers have been prepared from the stable colloidal suspensions and films thickness was observed to increase linearly, up to 200 nm, with the colloidal suspensions nanoparticles amount. Excitation and emission spectra have been measured and Er3+ ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration lower than 0.05 mol%. Er3+ ions also appear segregated at the grains surface for higher doping concentration. The optical parameters (refractive index, thickness and propagating modes) of a waveguide sample were measured at 632.8 and 543.4 nm by the prism coupling technique. A monomodal waveguide was obtained with attenuation loss of 3.5 dB/cm along a 2.5 cm optical path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of fluoride-containing solutions on the translucency of flowable composite resins, with respect the immersion time. Flow-It! (FI) and Natural Flow (NF) composite resins and three commercial brands of fluoride-containing solutions (Fluordent, Fluorgard and Oral B) were used. Specimens were prepared and stored in the solutions at 37degreesC, until the measurements were made after the following treatments: T1 - after 1 hour in relative humidity; T2 - after 1 h in solution; T3 - 24 h; T4 - 48 h; T5 - after a week; from T9, the measurements were accomplished weekly, up to 30-day immersion. To obtain translucency values an electrophoresis equipment was employed. Data were submitted to ANOVA and Tukey tests. The results disclosed that NF showed highest values of translucency and was statistically different from FI (p < 0.001). As regards the solutions, Fluordent and Oral B presented similar values and were statistically superior to Fluorgard (p < 0.05). Concerning the immersion time, similar results were observed for the different evaluation periods. It may be concluded that the fluoride-containing solutions affected the translucency of the composite resins, independently of the materials used. Among the tested resins, NF presented the best performance. (C) 2003 Kluwer Academic Publishers.