861 resultados para TiO2 cathodic electrosynthesis
Resumo:
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nanosized bismuth titanate was prepared via high-energy ball milling process through mechanically assisted synthesis directly from their oxide mixture of Bi2O3 and TiO2. Only Bi4Ti3O12 phase was formed after 3 h of milling time. The excess of 3 wt% Bi2O3 added in the initial mixture before milling does not improve significantly the formation of Bi4Ti3O12 phase comparing to stoichiometric mixture. The formed phase was amorphized independently of the milling time, The Rietveld analysis was adopted to determine the crystal structure symmetry, amount of amorphous phase, crystallite size and microstrains. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduced significantly. That was confirmed by SEM and TEM analysis. The particle size was less than 20 nm and show strong tendency to agglomeration. The electron diffraction pattern indicates that Bi4Ti3O12 crystalline powder is embedded in an amorphous phase of bismuth titanate. Phase composition and atom ratio in BIT ceramics were determined by X-ray diffraction and EDS analysis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The growth of zinc hexacyanoferrate (ZnHCF) hybrid film on the surface of graphite-epoxy composite (GEC) electrodes was demonstrated by cyclic voltammetry. Surface morphology of the hybrid film was investigated by using scanning electron microscopy. The effect of the type of monovalent cations on the redox behaviour of hybrid film was also studied. This effect indicated that the radius of the hydrated cation mainly determines the ion permeability of the film.The electrochemical behavior of the substituted anilines (procaine and sulfamerazine) in 1 M KCl of the modified GEC electrode showed a decrease of the cathodic currents while increasing the concentration of these analytes. The developed sensor also showed excellent stability for long time usage, higher sensitivity and cost-effective fabrication.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O processo pirometalúrgico convencional para a produção de chumbo metálico é comparado com dois novos processos ambientalmente não agressivos: o eletrohidrometalúrgico e fusão alcalina. O processo eletrohidrometalúrgico consiste em reduzir o tamanho das partículas dos compostos de chumbo e lixiviar os mesmos com uma solução ácida de fluoborato férrico. Neste ponto, o chumbo é dissolvido com os íons férricos sendo reduzidos a íons ferrosos. A solução resultante da lixiviação é bombeada para os compartimentos catódicos de uma célula eletrolítica de diafragma nos quais o chumbo metálico é depositado em catodos de aço inoxidável numa forma compacta e pura. A solução que é empobrecida em íons Pb2+ é então enviada aos compartimentos anódicos da mesma célula onde, nas superfícies de anodos ocorre a oxidação dos íons ferrosos a férricos, que retornam ao estágio de lixiviação. O processo de fusão alcalina consiste em se juntar soda cáustica fundida, enxofre e compostos de chumbo num reator a uma temperatura entre 600 °C e 700 °C. Como um resultado chumbo metálico é obtido juntamente com sais fundidos de sódio, sulfetos metálicos e borra. O fundido é processado, resultando em borra, sulfetos metálicos, soda cáustica e enxofre. Estes dois últimos retornam para o reator. Ambos os processos permitem a recuperação de metais como antimônio, estanho, enxofre e prata, que em processo convencional são perdidos na escória. Esses novos processos são ambientalmente corretos sem poluições severas de Pb e SO2. O chumbo metálico obtido é mais puro que aquele do processo convencional.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SnO2 nanoparticles doped with TiO2, CoO, Nb2O3 and Al2O3 were obtained in this work using the methods of coprecipitation and polymeric precursor. X Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the ceramic powders obtained. Their synterization capacity was determined by dilatometric studies. Sinterized samples of the system on study were also characterized electrically and microstructurally to determine their suitability as varistors.
Resumo:
Titanium oxide is a good candidate as new support for hydrotreating (HDT) catalysts, but has the inconvenience of presenting small surface area and poor thermal stability. To overcome these handicaps TiO2-Al2O3 mixed oxides were proposed as catalyst support. Here, the results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal complexing ratios [acac]/[Ti] and of sol aging temperature on the structural features of nanometric particles was analyzed by quasi-elastic light scattering (QELS) and N-2 adsorption isotherm measurements. These characterizations have shown that the addition of acac and the increase of aging temperature favor the full dispersion of primary nanoparticles in mother acid solution. The dried powder presents a monomodal distribution of slit-shaped micropores, formed by irregular packing of platelet primary particles, surface area superior to 200 m(2) g(-1) and mean pore size of about 1 nm. These characteristics of porous texture are preserved after firing at 673 K. The diffraction patterns of sample fired above 973 K show only the presence of anatase crystalline phase. The crystalline structure of the support remained unaltered after molybdenum adsorption, but the surface area and the micropore volume were drastically reduced. (C) 2002 Published by Elsevier B.V. B.V.