893 resultados para Three body model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The prediction and management of ecosystem responses to global environmental change would profit from a clearer understanding of the mechanisms determining the structure and dynamics of ecological communities. The analytic theory presented here develops a causally closed picture for the mechanisms controlling community and population size structure, in particular community size spectra, and their dynamic responses to perturbations, with emphasis on marine ecosystems. Important implications are summarised in non-technical form. These include the identification of three different responses of community size spectra to size-specific pressures (of which one is the classical trophic cascade), an explanation for the observed slow recovery of fish communities from exploitation, and clarification of the mechanism controlling predation mortality rates. The theory builds on a community model that describes trophic interactions among size-structured populations and explicitly represents the full life cycles of species. An approximate time-dependent analytic solution of the model is obtained by coarse graining over maturation body sizes to obtain a simple description of the model steady state, linearising near the steady state, and then eliminating intraspecific size structure by means of the quasi-neutral approximation. The result is a convolution equation for trophic interactions among species of different maturation body sizes, which is solved analytically using a novel technique based on a multiscale expansion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The survival and growth of populations of the obligately anaerobic pathogenic bacterium Bacteroides fragilis enriched for large capsules (LCs), small capsules (SCs) or an electron-dense layer (EDL; non-capsulate by light microscopy) were examined in a mouse model of infection over a minimum period of 20 d. Chambers which allowed the influx of leukocytes, but not the efflux of bacteria, were implanted in the mouse peritoneal cavity. The LC and EDL populations consistently attained viable cell densities of the order of 10(8)-10(9) c.f.u. ml-1 within 24 h, whereas the SC population did not. However, after 3 d, all three bacterial populations maintained total viable numbers of 10(8)-10(9) c.f.u. ml-1 within the chambers. LC expression was selected against within 24 h in the model, the populations becoming non-capsulate by light microscopy, whereas in the SC population expression of the SC was retained by approximately 90% of the population. The EDL population remained non-capsulate by light microscopy throughout. Lymphocytes infiltrated the chambers to an equal extent for all three B. fragilis populations and at approximately 1000 times higher concentration than chambers which contained only quarter-strength Ringer's solution. The presence of neutrophils within the chambers did not cause a decrease in the total viable bacterial count. Each population elicited antibodies specific for outer-membrane proteins and polysaccharide, as detected by immunoblotting, which cross-reacted with the other populations. Differences were observed in the immunogenicity of the outer-membrane proteins within the three populations. Neutrophils were initially the predominant cell type in the chambers, but as the total leukocyte count increased with incubation time, neutrophils were outnumbered by other leukocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group transfer polymerization (GTP) chemistry was employed for the preparation of polymethacrylate networks of controlled structure (quasi-model networks) of three different types: (a) regular quasi-model networks, in which all polymer chains were linked at their ends, leaving, in principle, no free chain ends, (b) crosslinked star polymer quasi-model networks, in which star polymers were interlinked via half of their chains, letting the other half free (dangling), and (c) shell-crosslinked polymer quasi-model networks, in which the outer part of the network contained polymer arms (dangling chains). Combination of hydrophilic and hydrophobic monomers led to amphiphilic networks whose aqueous swelling behavior was characterized gravimetrically.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).