832 resultados para Thorium alloys.
Resumo:
Functional and smart materials have gained large scientific and practical interest in current research and development. The Heusler alloys form an important class of functional materials used in spintronics, thermoelectrics, and for shape memory alloy applications. An important aspect of functional materials is the adaptability of their physical properties. In this work functional polycrystalline bulk and epitaxial thin film Heusler alloys are characterized by means of spectroscopic investigation methods, X-ray magnetic circular dichroism (XMCD) and energy dispersive X-ray analysis (EDX). With EDX the homogeneity of the samples is studied extensively. For some cases of quaternary compounds, for example Co2(MnxTi1−x)Sn and Co2(Mn0.5Dy0.5)Sn, an interesting phase separation in two nearly pure ternary Heusler phases occurs. For these samples the phase separation leads to an improvement of thermoelectric properties. XMCD as the main investigation method was used to study Co2TiZ (Z = Si, Sn, and Sb), Co2(MnxTi1−x)Si, Co2(MnxTi1−x)Ge, Co2Mn(Ga1−xGex), Co2FeAl, Mn2VAl, and Ni2MnGa Heusler compounds. The element-specific magnetic moments are calculated. Also, the spin-resolved unoccupied density of states is determined, for example giving hints for half-metallic ferromagnetism for some Co-based compounds. The systematic change of the magnetic moments and the shift of the Fermi energy is a proof that Heusler alloys are suitable for a controlled tailoring of physical properties. The comparison of the experimental results with theoretical predictions improves the understanding of complex materials needed to optimize functional Heusler alloys.
Resumo:
This thesis work encloses activities carried out in the Laser Center of the Polytechnic University of Madrid and the laboratories of the University of Bologna in Forlì. This thesis focuses on the superficial mechanical treatment for metallic materials called Laser Shock Peening (LSP). This process is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The innovation aspect of this work is the LSP application to specimens with extremely low thickness. In particular, after a bibliographic study and comparison with the main treatments used for the same purposes, this work analyzes the physics of the operation of a laser, its interaction with the surface of the material and the generation of the surface residual stresses which are fundamentals to obtain the LSP benefits. In particular this thesis work regards the application of this treatment to some Al2024-T351 specimens with low thickness. Among the improvements that can be obtained performing this operation, the most important in the aeronautic field is the fatigue life improvement of the treated components. As demonstrated in this work, a well-done LSP treatment can slow down the progress of the defects in the material that could lead to sudden failure of the structure. A part of this thesis is the simulation of this phenomenon using the program AFGROW, with which have been analyzed different geometric configurations of the treatment, verifying which was better for large panels of typical aeronautical interest. The core of the LSP process are the residual stresses that are induced on the material by the interaction with the laser light, these can be simulated with the finite elements but it is essential to verify and measure them experimentally. In the thesis are introduced the main methods for the detection of those stresses, they can be mechanical or by diffraction. In particular, will be described the principles and the detailed realization method of the Hole Drilling measure and an introduction of the X-ray Diffraction; then will be presented the results I obtained with both techniques. In addition to these two measurement techniques will also be introduced Neutron Diffraction method. The last part refers to the experimental tests of the fatigue life of the specimens, with a detailed description of the apparatus and the procedure used from the initial specimen preparation to the fatigue test with the press. Then the obtained results are exposed and discussed.
Resumo:
The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.
Resumo:
The fracture properties of high-strength spray-formed Al alloys were investigated, with consideration of the effects of elemental additions such as zinc,manganese, and chromium and the influence of the addition of SiC particulate. Fracture resistance values between 13.6 and 25.6 MPa (m)1/2 were obtained for the monolithic alloys in the T6 and T7 conditions, respectively. The alloys with SiC particulate compared well and achieved fracture resistance values between 18.7 and 25.6 MPa (m)1/2. The spray-formed materials exhibited a loss in fracture resistance (KI) compared to ingot metallurgy 7075 alloys but had an improvedperformance compared to high-solute powder metallurgy alloys of similar composition. Characterization of the fracture surfaces indicated a predominantly intergranular decohesion, possibly facilitated by the presence of incoherent particles at the grain boundary regions and by the large strength differentialbetween the matrix and precipitate zone. It is believed that at the slip band-grain boundary intersection, particularly in the presence of large dispersoids and/or inclusions, microvoid nucleation would be significantly enhanced. Differences in fracture surfaces between the alloys in the T6 and T7 condition were observed and are attributed to inhomogeneous slip distribution, which results in strain localization at grain boundaries. The best overall combination of fracture resistance properties were obtained for alloys with minimum amounts of chromium and manganese additions.
Resumo:
It is known that the electrical resistance of annealed metals is usually smaller than that of metals in their cold worked state. The curve showing the relation between electrical resistance and annealing temperature reaches a minimum; continued annealing at higher temperature produces an increase in the electrical resistance. In the case of alloys it has been noted that a second decrease occurs at higher annealing temperature. The following work corroborates the observance of previous investigations. The electrical resistance of cold worked copper, gold, nickel, and iron decreased with annealing and then increased, the minimum being around 300° C. or 400° C. Monel metal showed a minimum resistance followed by an increase which in turn was followed by a second decrease.
Resumo:
In order to determine the best annealing temperature at which to age-harden the alloys, hardness tests on specimen annealed for different lengths of time at different temperatures were made.
Resumo:
Prior to the last few years little practical use was made of the element tellurium, which is obtained from gold and silver tellurides and from the slimes of electrolytic copper refineries. Lately, however, more study has been made of its properties when alloyed with other metals. It was the purpose of this thesis to study the effects of the addition of tellurium to lead, particularly in small amounts.
Resumo:
Although there is no standardized list of alloys, most investigators have, to avoid confusion, concurred in at least grouping the metals under several general heads. Precious metals: gold, silver and the platinum group; the light metals: aluminum and magnesium; the non-ferrous metals (excluding all steels and iron-base alloys); and the antifriction metals.
Resumo:
Among the many aluminum alloys which have been studied are the binary copper-aluminum alloys. These have proven to be among the most useful of the aluminum alloys thus far worked upon.
Resumo:
The alloy system selected for study was the binary alloy of platinum and silver. An examination of the various silver alloy diagrams revealed that of several possible alloys, the silver platinum was the most suitable with regard to solubility.
Some Preliminary Investiagtions of the Magnetic Permeabilities of Alloys of the Ferromagnetic Metals
Resumo:
The problem presented for this thesis was an investigation of the magnetic properties of the alloys produced by the methods of powder metallurgy. The question behind this was the correlation of the magnetic properties with the bonding properties and with the diffusion of the constituents.
Resumo:
An attempt was made to make lead-lithium alloys by electrodeposition of lithium using a molten bath and a molten lead cathode.The variables taken into consideration were: composition of the melt, temperature of the melt, and current density. The purpose of changing these factors was to determine what effect each had on the current efficiency.
Resumo:
From the standpoint of its practical usefulness, the most important characteristics of metallic lead are its cheapness, resistance to corrosion, plasticity, high specific gravity, low melting point, and its ability to form alloys in which some properties are modified by the addition of other elements, while other properties remain the same.