920 resultados para Thiazolidine-4-carboxylic acid
Resumo:
Near infrared Yb3+ vibronic sideband spectroscopy was used to characterize specific lanthanide binding sites in bacteriorhodopsin (bR) and retinal free bacteriorhodopsin (bO). The VSB spectra for deionized bO regenerated with a ratio of 1:1 and 2:1 ion to bO are identical. Application of a two-dimensional anti-correlation technique suggests that only a single Yb3+ site is observed. The Yb3+ binding site in bO is observed to consist of PO2− groups and carboxylic acid groups, both of which are bound in a bidentate manner. An additional contribution most likely arising from a phenolic group is also observed. This implies that the ligands for the observed single binding site are the lipid head groups and amino acid residues. The vibronic sidebands of Yb3+ in deionized bR regenerated at a ratio of 2:1 ion to bR are essentially identical to those in bO. The other high-affinity binding site is thus either not evident or its fluorescence is quenched. A discussion is given on the difference in binding of Ca2+ (or Mg2+) and lanthanides in phospholipid membrane proteins.
Resumo:
In α1-AT deficiency, a misfolded but functionally active mutant α1-ATZ (α1-ATZ) molecule is retained in the endoplasmic reticulum of liver cells rather than secreted into the blood and body fluids. Emphysema is thought to be caused by the lack of circulating α1-AT to inhibit neutrophil elastase in the lung. Liver injury is thought to be caused by the hepatotoxic effects of the retained α1-ATZ. In this study, we show that several “chemical chaperones,” which have been shown to reverse the cellular mislocalization or misfolding of other mutant plasma membrane, nuclear, and cytoplasmic proteins, mediate increased secretion of α1-ATZ. In particular, 4-phenylbutyric acid (PBA) mediated a marked increase in secretion of functionally active α1-ATZ in a model cell culture system. Moreover, oral administration of PBA was well tolerated by PiZ mice (transgenic for the human α1-ATZ gene) and consistently mediated an increase in blood levels of human α1-AT reaching 20–50% of the levels present in PiM mice and normal humans. Because clinical studies have suggested that only partial correction is needed for prevention of both liver and lung injury in α1-AT deficiency and PBA has been used safely in humans, it constitutes an excellent candidate for chemoprophylaxis of target organ injury in α1-AT deficiency.
Resumo:
Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-d-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 μM Zn2+. Indicating particularly high permeability through Ca2+-permeable α-amino3-hydroxy-5-methyl-4-isoxazolepropionic-acid/kainate (Ca-A/K) channels, micromolar [Zn2+]i rises were observed only after kainate exposures and only in neurons expressing these channels [Ca-A/K(+) neurons]. Further studies using the oxidation-sensitive dye, hydroethidine, revealed Zn2+-dependent reactive oxygen species (ROS) generation that paralleled the [Zn2+]i rises, with rapid oxidation observed only in the case of Zn2+ entry through Ca-A/K channels. Indicating a mitochondrial source of this ROS generation, hydroethidine oxidation was inhibited by the mitochondrial electron transport blocker, rotenone. Additional evidence for a direct interaction between Zn2+ and mitochondria was provided by the observation that the Zn2+ entry through Ca-A/K channels triggered rapid mitochondrial depolarization, as assessed by using the potential-sensitive dye tetramethylrhodamine ethylester. Whereas Ca2+ influx through Ca-A/K channels also triggers ROS production, the [Zn2+]i rises and subsequent ROS production are of more prolonged duration.
Resumo:
Localized, chemical two-photon photolysis of caged glutamate was used to map the changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors caused by long-term synaptic depression (LTD) in cerebellar Purkinje cells. LTD produced by pairing parallel fiber activity with depolarization was accompanied by a decline in the response of Purkinje cells to uncaged glutamate that accounted for both the time course and magnitude of LTD. This depression of glutamate responses was observed not only at the site of parallel fiber stimulation but also at more distant sites. The amount of LTD decreased with distance and was half-maximal 50 μm away from the site of parallel fiber activity. Estimation of the number of parallel fibers active during LTD induction indicates that LTD modified glutamate receptors not only at active synapses but also at 600 times as many inactive synapses on a single Purkinje cell. Therefore, both active and inactive parallel fiber synapses can undergo changes at a postsynaptic locus as a result of associative pre- and postsynaptic activity.
Resumo:
Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of brains of patients with Huntington disease (HD). Transgenic mice that express exon 1 of an abnormal human HD gene (line R6/2) develop neurologic symptoms at 9–11 weeks of age through an unknown mechanism. Analysis of glutamate receptors (GluRs) in symptomatic 12-week-old R6/2 mice revealed decreases compared with age-matched littermate controls in the type 1 metabotropic GluR (mGluR1), mGluR2, mGluR3, but not the mGluR5 subtype of G protein-linked mGluR, as determined by [3H]glutamate receptor binding, protein immunoblotting, and in situ hybridization. Ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors were also decreased, while N-methyl-d-aspartic acid receptors were not different compared with controls. Other neurotransmitter receptors known to be affected in HD were also decreased in R6/2 mice, including dopamine and muscarinic cholinergic, but not γ-aminobutyric acid receptors. D1-like and D2-like dopamine receptor binding was drastically reduced to one-third of control in the brains of 8- and 12-week-old R6/2 mice. In situ hybridization indicated that mGluR and D1 dopamine receptor mRNA were altered as early as 4 weeks of age, long prior to the onset of clinical symptoms. Thus, altered expression of neurotransmitter receptors precedes clinical symptoms in R6/2 mice and may contribute to subsequent pathology.
Resumo:
Muconate lactonizing enzyme (MLE), a component of the β-ketoadipate pathway of Pseudomonas putida, is a member of a family of related enzymes (the “enolase superfamily”) that catalyze the abstraction of the α-proton of a carboxylic acid in the context of different overall reactions. New untwinned crystal forms of MLE were obtained, one of which diffracts to better than 2.0-Å resolution. The packing of the octameric enzyme in this crystal form is unusual, because the asymmetric unit contains three subunits. The structure of MLE presented here contains no bound metal ion, but is very similar to a recently determined Mn2+-bound structure. Thus, absence of the metal ion does not perturb the structure of the active site. The structures of enolase, mandelate racemase, and MLE were superimposed. A comparison of metal ligands suggests that enolase may retain some characteristics of the ancestor of this enzyme family. Comparison of other residues involved in catalysis indicates two unusual patterns of conservation: (i) that the position of catalytic atoms remains constant, although the residues that contain them are located at different points in the protein fold; and (ii) that the positions of catalytic residues in the protein scaffold are conserved, whereas their identities and roles in catalysis vary.
Resumo:
Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was performed by using a rat brain cDNA library. This screen identified a unique clone of 1.4 kb, which encoded a 79-aa brain-specific protein that bound the catalytic domain of CaM-KII α and β and potently inhibited kinase activity with an IC50 of 50 nM. The inhibitory protein (CaM-KIIN), and a 28-residue peptide derived from it (CaM-KIINtide), was highly selective for inhibition of CaM-KII with little effect on CaM-KI, CaM-KIV, CaM-KK, protein kinase A, or protein kinase C. CaM-KIIN interacted only with activated CaM-KII (i.e., in the presence of Ca2+/CaM or after autophosphorylation) by using glutathione S-transferase/CaM-KIIN precipitations as well as coimmunoprecipitations from rat brain extracts or from HEK293 cells cotransfected with both constructs. Colocalization of CaM-KIIN with activated CaM-KII was demonstrated in COS-7 cells transfected with green fluorescent protein fused to CaM-KIIN. In COS-7 cells phosphorylation of transfected α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors by CaM-KII, but not by protein kinase C, was blocked upon cotransfection with CaM-KIIN. These results characterize a potent and specific cellular inhibitor of CaM-KII that may have an important role in the physiological regulation of this key protein kinase.
Resumo:
In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.
Resumo:
Expression of the S1S2 ligand binding domain [Kuusinen, A., Arvola, M. & Keinänen, K. (1995) EMBO J. 14, 6327–6332] of the rat α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-selective glutamate receptor GluR2 in Escherichia coli under control of a T7 promoter leads to production of >100 mg/liter of histidine-tagged S1S2 protein (HS1S2) in the form of inclusion bodies. Using a novel fractional factorial folding screen and a rational, step-by-step approach, multiple conditions were determined for the folding of the HS1S2 α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding domain. Characterization of the HS1S2 ligand binding domain showed that it is water-soluble, monomeric, has significant secondary structure, and is sensitive to trypsinolysis at sites close to the beginning of the putative transmembrane regions. Application of a fractional factorial folding screen to other proteins may provide a useful means to evaluate E. coli as an economical and convenient expression host.
Resumo:
Allopregnanolone (ALLO), is a brain endogenous neurosteroid that binds with high affinity to γ-aminobutyric acid type A (GABAA) receptors and positively modulates the action of GABA at these receptors. Unlike ALLO, 5α-dihydroprogesterone (5α-DHP) binds with high affinity to intracellular progesterone receptors that regulate DNA transcription. To investigate the physiological roles of ALLO and 5α-DHP synthesized in brain, we have adopted a mouse model involving protracted social isolation. In the frontal cortex of mice, socially isolated for 6 weeks, both neurosteroids were decreased by approximately 50%. After administration of (17β)-17-(bis-1-methyl amino carbonyl) androstane-3,5-diene-3-carboxylic acid (SKF105,111), an inhibitor of the enzyme (5α-reductase Type I and II) that converts progesterone into 5α-DHP, the ALLO and 5α-DHP content of frontal cortex of both group-housed and socially isolated mice decreased exponentially to 10%–20% of control values in about 30 min. The fractional rate constants (k h−1) of ALLO and 5α-DHP decline multiplied by the ALLO and 5α-DHP concentrations at any given steady-state estimate the rate of synthesis required to maintain that steady state. After 6 weeks of social isolation, ALLO and 5α-DHP biosynthesis rates were decreased to 30% of the values calculated in group-housed mice. Moreover, in socially isolated mice, the expression of 5α-reductase Type I mRNA and protein was approximately 50% lower than in group-housed mice whereas 3α-hydroxysteroid oxidoreductase mRNA expression was equal in the two groups. Protracted social isolation in mice may provide a model to investigate whether 5α-DHP by a genomic action, and ALLO by a nongenomic mechanism down-regulate the action of drugs acting as agonists, partial agonists, or positive allosteric modulators of the benzodiazepine recognition sites expressed by GABAA receptors.
Resumo:
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
Resumo:
The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes. A series of 10 C5-modified analogues of 2′-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality. For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties. The imidazole function was conjugated to these C5-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid). The substrate properties of the nucleotides (fully replacing dTTP) with Taq polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments. 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates. In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates. The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XbaI and by mass spectrometry of the PCR products.
Resumo:
Mutant sorghum (Sorghum bicolor [L.] Moench) deficient in functional phytochrome B exhibits reduced photoperiodic sensitivity and constitutively expresses a shade-avoidance phenotype. Under relatively bright, high red:far-red light, ethylene production by seedlings of wild-type and phytochrome B-mutant cultivars progresses through cycles in a circadian rhythm; however, the phytochrome B mutant produces ethylene peaks with approximately 10 times the amplitude of the wild type. Time-course northern blots show that the mutant's abundance of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase mRNA SbACO2 is cyclic and is commensurate with ethylene production, and that ACC oxidase activity follows the same pattern. Both SbACO2 abundance and ACC oxidase activity in the wild-type plant are very low under this regimen. ACC levels in the two cultivars did not demonstrate fluctuations coincident with the ethylene produced. Simulated shading caused the wild-type plant to mimic the phenotype of the mutant and to produce high amplitude rhythms of ethylene evolution. The circadian feature of the ethylene cycle is conditionally present in the mutant and absent in the wild-type plant under simulated shading. SbACO2 abundance in both cultivars demonstrates a high-amplitude diurnal cycle under these conditions; however, ACC oxidase activity, although elevated, does not exhibit a clear rhythm correlated with ethylene production. ACC levels in both cultivars show fluctuations corresponding to the ethylene rhythm previously observed. It appears that at least two separate mechanisms may be involved in generating high-amplitude ethylene rhythms in sorghum, one in response to the loss of phytochrome B function and another in response to shading.
Resumo:
Leguminous plants regulate the number of Bradyrhizobium- or Rhizobium-infected sites that develop into nitrogen-fixing root nodules. Ethylene has been implicated in the regulation of nodule formation in some species, but this role has remained in question for soybean (Glycine max). The present study used soybean mutants with decreased responsiveness to ethylene, soybean mutants with defective regulation of nodule number, and Ag+ inhibition of ethylene perception to examine the role of ethylene in the regulation of nodule number. Nodule numbers on ethylene-insensitive mutants and plants treated with Ag+ were similar to those on wild-type plants and untreated plants, respectively. Hypernodulating mutants displayed wild-type ethylene sensitivity. Suppression of nodule numbers by high nitrate was also similar between ethylene-insensitive plants, wild-type plants, and plants treated with Ag+. Ethylene insensitivity of the roots of etr1-1 mutants was confirmed using assays for sensitivity to 1-aminocyclopropane-1-carboxylic acid and for ethylene-stimulated root-hair formation. Additional phenotypes of etr1-1 roots were also characterized. Ethylene-dependent pathways regulate the number of nodules that form on species such as pea and Medicago truncatula, but our data indicate that ethylene is less significant in regulating the number of nodules that form on soybean.
Resumo:
We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floral-organ-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.