998 resultados para TOXIC MATERIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum, a mixture of organic compounds, comes from underground rock formations ranging in age from ten to several hundred million years. The process by which it is formed and developed is not yet completely known. Studies indicate that petroleum is formed mainly from microscopic-sized marine animals and plants. When these organisms died in water of low oxygen content, they did not decompose. Thus their remains sank to the bottom to be buried under accumulations of sediment. Their conversion to petroleum remains a subject of research even today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heavy metal contamination in the environment may lead to circumstances like bioaccumulation and inturn biomagnification. Hence cheaper and effective technologies are needed to protect the precious natural resources and biological lives. A suitable technique is the one which meets the technical and environmental criteria for dealing with a particular remediation problem and should be site-specific due to spatial and climatic variations and it may not economically feasible everywhere. The search for newer technologies for the environmental therapy, involving the removal of toxic metals from wastewaters has directed attention to adsorption, based on metal binding capacities of various adsorbent materials. Therefore, the present study aim to identify and evaluate the most current mathematical formulations describing sorption processes. Although vast amount of research has been carried out in the area of metal removal by adsorption process using activated carbon few specific research data are available in different scientific institutions. The present work highlights the seasonal and spatial variations in the distribution of some selected heavy metals among various geochemical phases of Cochin Estuarine system and also looked into an environmental theraptic/remedial approach by adsorption technique using activated charcoal and chitosan, to reduce and thereby controlling metallic pollution. The thesis has been addressed in seven chapters with further subdivisions. The first chapter is introductory, stating the necessity of reducing or preventing water pollution due to the hazardous impact on environment and health of living organisms and drawing it from a careful review of literature relevant to the present study. It provides a constricted description about the study area, geology, and general hydrology and also bears the major objectives and scope of the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the local environment on the energetic strain within small (SiO)N rings (with N=2,3) in silica materials is investigated via periodic model systems employing density functional calculations. Through comparison of the energies of various nonterminated systems containing small rings in strained and relatively unstrained environments, with alpha quartz, we demonstrate how small ring strain is affected by the nature of the embedding environment. We compare our findings with numerous previously reported calculations, often predicting significantly different small-ring strain energies, leading to a critical assessment of methods of calculating accurate localized ring energies. The results have relevance for estimates of the strain-induced response (e.g., chemical, photo, and radio) of small silica rings, and the propensity for them to form in bulk glasses, thin films, and nanoclusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families. In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of synthetic fibres vary with thc inherent physical characteristics of the basic raw materials used mode of preparation of yarns and method of construction of twines. Since the synthetic fibres as maufactured from polymers which are synthesized from simple chemical units, the qualities of man-made fibres can he influenced by the process of manufacture and certain modifications can even be introduced at the processing stage to meet any specific requirement to a certain extent. Hence, an elaborate study of the properties of fish not twines produced has been taken up with a view to determining their suitability for various types of fishing gear with particular reference to conditions prevailing in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motivatitni for" the present work is from .a project sanctioned by TSRO. The work involved the development of a quick and reliable test procedure using microwaves, for tflue inspection of cured propellant samples and a method to monitor the curing conditions of propellant mix undergoing the curing process.Normal testing CHE the propellant samples involvecuttimg a piece from each carton and testing it for their tensile strength. The values are then compared with standard ones and based on this result the sample isaccepted or rejected. The tensile strength is a measure ofdegree of cure of the propellant mix. But this measurementis a destructive procedure as it involves cutting of the sample. Moreover, it does not guarantee against nonuniform curing due to power failure, hot air-line failure,operator error etc. This necessitated the need for the development of a quick and reliable non-destructive test procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gelation provides a unique medium, which often induces organization of molecules resulting in the modulation of their optical, morphological and electronic properties thereby opening a new world of fascinating materials with interesting physical properties at nano- meso- and macroscopic levels. Supramolecular gels based on linear π-systems have attracted much attention due to their inherent optical and electronic properties which find application in organic electronics, light harvesting and sensing. They exhibit reversible properties due to the dynamic nature of noncovalent forces. As a result, studies on such soft materials are currently a topic of great interest. Recently, researchers are actively involved in the development of sensors and stimuli-responsive materials based on self-assembled π-systems, which are also called smart materials. The present thesis is divided into four chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) spectroscopy is an optical technique that has emerged successful in the field of semiconductor material and device characterization. This technique is quite a powerful one which gives idea about the defect levels in a material, the band gap of the material, composition as well as material quality. Over the recent years it has received an elevation as a mainstream characterization technique. This thesis is an attempt to characterize each individual layer used in a thin film solar cell with special focus on the electrical properties. This will be highly beneficial from the lab as well as industrial point of view because electrical measurements generally are contact mode measurements which tend to damage the surface. As far as a thin film solar cell is concerned, the constituent layers are the transparent conducting oxide (TCO), absorber layer, buffer layer and top electrode contact. Each layer has a specific role to play and the performance of a solar cell is decided and limited by the quality of each individual layer. Various aspects of PL spectroscopy have been employed for studying compound semiconductor thin films [deposited using chemical spray pyrolysis (CSP)] proposed for solar cell application. This thesis has been structured in to seven chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important part of any footwear is the sole (or sole and heel) which withstands all the hannful external factors such as rouglmess of the ground or road, sharp objects, thorns and stones, heat, dampness and cold during walking. The properties desirable in soling material, therefore, would be 1. lightness 2. resistance to wear and tear for long service life 3. flexibility/softness for wearing comfort 4. thennal insulation Rubber soling surpasses all other soling materials in better performance and lower cost. Because MC sole is soft and very light, and has good abrasion resistance, flex properties and set behaviour it has become very popular all over the world and demand for better quality product is ever increasing. Due to the traditional approach adopted by the footwear industry in foot wear design, the rubber based footwear export surprisingly contributes only a small percentage. The essence of success for any industry lies in the expansion of the export market. Microcellular soles are manufactured for the last three decades without much change in the traditional design and colour pattern. In recent years domestic customers have also started demanding better quality products. In view of the changing taste of the customer and growing competition from other countries, substantial improvement in the export potential will require new base materials for regular or fashion rubber based footwears. The main objective of the present study is to develop new base materials for making MC soles with good quality, viz., light weight, durability and bright colours

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of heavy metals has increased quickly since the industrial revolution. Heavy metals frequently form compounds that can be toxic, carcinogenic, or mutagenic, even in very small concentrations. The usual techniques of removing metals from wastewaters are in general expensive and have many restrictions. Alternative methods of metal removal and recovery based on biological materials have been measured. Among various agents, the use of microbes for the removal of metals from industrial and municipal wastewater has been proposed as a promising alternative to conventional heavy metal management strategies in past decades. Thus, the present study aims to isolate and characterize bacteria from soil, sediment, and waters of metal-contaminated industrial area to study the zinc resistance patterns and the zinc bioaccumulation potential of the selected microorganism. Zinc analysis of the samples revealed that concentrations varying from 39.832 m g/L to 310.24 m g/L in water, 12.81 m g/g to 407.53 m g/g in soil, and 81.06 m g/g to 829.54 m g/g in sediment are present. Bacterial zinc resistance study showed that tolerance to Zn was relatively low (<500 m g/ml). Ten bacterial genera were represented in soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples. Bacillus, Pseudomonas , and Enterobacter were found in soil, sediment, and water samples. Highly zincresistant Bacillus sp. was selected for zinc removal experiment. Zinc removal studies revealed that at pH 5 about 40% reduction occurs; at pH 7, 25% occurs; and at pH 9, 50% occurs. Relatively an increased removal of Zinc was observed in the fi rst day of the experiment by Bacillus sp. The metal bioaccumulative potential of the selected isolates may have possible applications in the removal and recovery of zinc from industrial ef fluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosurfactants are surface active compounds released by microorganisms. They are biodegradable non-toxic and eco-friendly materials. In this review we have updated the information about different microbial surfactants. The biosurfactant production depends on the fermentation conditions, environmental factors and nutrient availability. The extraction of the biosurfactants from the cell-free supernatant using the solvent extraction procedure and the qualitative and quantitative analysis has been discussed with appropriate equipment details. The application of the biosurfactant includes biomedical, cosmetic and bioremediation. The type of microbial biosurfactants include trehalose lipids, rhamnolipids, sophorolipids, glycolipids, cellobiose lipids, polyol lipids, diglycosyl diglycerides, lipoloysaccharides, arthrofactin, lichensyn A and B, surfactin, viscosin, phospholipids, sulphonyl lipids and fatty acids. Rhamnolipid biosurfactants produced by Pseudomonas aeruginosa DS10-129 showed significant applications in the bioremediation of hydrocarbons in gasoline spilled soil and petroleum oily sludge. Rhamnolipid biosurfactant enhanced the bioremediation process by releasing the weathered oil from the soil matrices and enhanced the bioavailability of hydrocarbons for microbial degradation. It is having potential applications in the remediation of hydrocarbon contaminated sites. Biosurfactants from marine microorganisms also offer great potential in bioremediation of oil contaminated oceanic environments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article present the result from a study of two sediment cores collected from the environmentally distinct zones of CES. Accumulation status of five toxic metals: Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu) and Lead (Pb) were analyzed. Besides texture and CHNS were determined to understand the composition of the sediment. Enrichment Factor (EF) and Anthropogenic Factor (AF) were used to differentiate the typical metal sources. Metal enrichment in the cores revealed heavy load at the northern (NS1 ) region compared with the southern zone (SS1). Elevation of metal content in core NS1 showed the industrial input. Statistical analyses were employed to understand the origin of metals in the sediment samples. Principal Component Analysis (PCA) distinguishes the two zones with different metal accumulation capacity: highest at NS1 and lowest at SS1. Correlation analysis revealed positive significant relation only in core NS1, adhering to the exposition of the intensified industrial pollution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kerala, God’s own country is blessed with immense natural resources. It’s high time that the state’s natural resources being utilized effectively. While sustainable development is the need of the hour, we have to take lead in initiating activities that would minimize the exploitation of our natural resources resulting in their effective utilization. This paper narrates an overview of innovative building materials especially using natural fibres available in Kerala and discusses the feasibility of utilising such fibres in the context of sustainable building materials in Kerala. The paper also discusses how these materials can be effectively utilized to reduce the huge investment in the construction industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 20th century witnessed the extensive use of microwaves in industrial, scientific and medical fields. The major hindrance to many developments in the ISM field is the lack of knowledge about the effect of microwaves on materials used in various applications. The study of the interaction of microwaves with materials demanded the knowledge of the dielectric properties of these materials. However, the dielectric properties of many of these materials are still unknown or less studied. This thesis is an effort to shed light into the dielectric properties of some materials which are used in medical, scientific and industrial fields. Microwave phantoms are those materials used in microwave simulation applications. Effort has been taken to develop and characterize low cost, eco-friendly phantoms from Biomaterials and Bioceramics. The interaction of microwaves with living tissues paved way to the development of materials for electromagnetic shielding. Materials with good conductivity/absorption properties could be used for EMI shielding applications. Conducting polymer materials are developed and characterized in this context. The materials which are developed and analyzed in this thesis are Biomaterials, Bioceramics and Conducting polymers. The use of materials of biological origin in scientific and medical applications provides an eco-friendly pathway. The microwave characterization of the materials were done using cavity material perturbation method. Low cost and ecofriendly biomaterial films were developed from Arrowroot and Chitosan. The developed films could be used in applications such as microwave phantom material, capsule material in pharmaceutical applications, trans-dermal patch material and eco-friendly Band-Aids. Bioceramics with better bioresorption and biocompatibility were synthesized. Bioceramics such as Hydroxyapatite, Beta tricalcium phosphate and Biphasic Calcium Phosphate were studied. The prepared bioceramics could be used as phantom material representing Collagen, Bone marrow, Human abdominal wall fat and Human chest fat. Conducting polymers- based on Polyaniline, are developed and characterized. The developed materials can be used in electromagnetic shielding applications such as in anechoic chambers, transmission cables etc