965 resultados para TONIC CONTRACTION
Resumo:
The effects induced by nitric oxide (NO) in different tissues depend on direct and/or indirect interactions with K+ channels. The indirect interaction of NO is produced by activation of guanylyl cyclase which increases the intracellular cGMP. Since NO, cGMP and 4-aminopyridine alone induce tetanic fade and increase amplitude of muscular contractions in isolated rat neuromuscular preparations, the present study was undertaken to determine whether or not the neuromuscular effects of NO and 8-Br-cGMP can be modified by 4-aminopyridine. Using the phrenic nerve and diaphragm muscle isolated from male Wistar rats (200-250 g), we observed that L-arginine (4.7 mM) and 8-Br-cGMP (18 µM), in contrast to D-arginine, induced an increase in the amplitude of muscle contraction (10.5 ± 0.7%, N = 10 and 8.0 ± 0.7%, N = 10) and tetanic fade (15 ± 2.0%, N = 8 and 11.6 ± 1.7%, N = 8) at 0.2 and 50 Hz, respectively. N G-nitro-L-arginine (4 mM, N = 8 and 8 mM, N = 8) antagonized the effects of L-arginine. 4-Aminopyridine (1 and 10 µM) caused a dose-dependent increase in the amplitude of muscle contraction (15 ± 1.8%, N = 9 and 40 ± 3.1%, N = 10) and tetanic fade (17.7 ± 3.3%, N = 8 and 37.4 ± 1.3%, N = 8). 4-Aminopyridine (1 µM, N = 8) did not cause any change in muscle contraction amplitude or tetanic fade of preparations previously paralyzed with d-tubocurarine or stimulated directly. The effects induced by 4-aminopyridine alone were similar to those observed when the drug was administered in combination with L-arginine or 8-Br-cGMP. The data suggest that the blockage of K+ channels produced by 4-aminopyridine inhibits the neuromuscular effects induced by NO and 8-Br-cGMP. Therefore, the presynaptic effects induced by NO seem to depend on indirect interactions with K+ channels.
Resumo:
It was previously reported that systemic administration of dipyrone inhibited the tonic component of generalized tonic-clonic seizures in both the electroshock and the audiogenic seizure models. The aim of the present study was to investigate the mechanisms involved in the anticonvulsant action of dipyrone by assessing the role of nitric oxide and opioids in the electroshock (female 60- to 90-day-old Wistar rats, N = 5-11) and audiogenic seizure (female 60- to 90-day-old Wistar audiogenic rats, N = 5-11) models of epilepsy. Naloxone (5 mg/kg, sc) significantly reversed the anticonvulsant effect of dipyrone in rats submitted to the induction of audiogenic seizures (ANOVA/Bonferroni's test), suggesting the involvement of opioid peptides in this action. In the electroshock model no reversal of the anticonvulsant effect of dipyrone by naloxone (5 mg/kg, sc) was demonstrable. The acute (120 mg/kg, ip) and chronic (25 mg/kg, ip, twice a day/4 days) administration of L-NOARG did not reverse the anticonvulsant action of dipyrone in the audiogenic seizure model, suggesting that the nitric oxide pathway does not participate in such effect. Indomethacin (10, 20 and 30 mg/kg, ip) used for comparison had no anticonvulsant effect in the audiogenic seizure model. In conclusion, opioid peptides but not nitric oxide seem to be involved in the anticonvulsant action of dipyrone in audiogenic seizures.
Resumo:
The rostral ventrolateral medulla (RVLM) contains neurons involved in tonic and reflex control of arterial pressure. We describe the effects of gamma-aminobutyric acid (GABA) and anesthetics injected into the RVLM of conscious and urethane (1.2 g/kg, iv) anesthetized Wistar rats (300-350 g). In conscious rats, bilateral microinjection of GABA (50 nmol/200 nl) induced a small but significant decrease in blood pressure (from 130 ± 3.6 to 110 ± 5.6 mmHg, N = 7). A similar response was observed with sodium pentobarbital microinjection (24 nmol/200 nl). However, in the same animals, the fall in blood pressure induced by GABA (from 121 ± 8.9 to 76 ± 8.8 mmHg, N = 7) or pentobarbital (from 118 ± 4.5 to 57 ± 11.3 mmHg, N = 6) was significantly increased after urethane anesthesia. In contrast, there was no difference between conscious (from 117 ± 4.1 to 92 ± 5.9 mmHg, N = 7) and anesthetized rats (from 123 ± 6.9 to 87 ± 8.7 mmHg, N = 7) when lidocaine (34 nmol/200 nl) was microinjected into the RVLM. The heart rate variations were not consistent and only eventually reached significance in conscious or anesthetized rats. The right position of pipettes was confirmed by histology and glutamate microinjection into the RVLM. These findings suggest that in conscious animals the RVLM, in association with the other sympathetic premotor neurons, is responsible for the maintenance of sympathetic vasomotor tone during bilateral RVLM inhibition. Activity of one or more of these premotor neurons outside the RVLM can compensate for the effects of RVLM inhibition. In addition, the effects of lidocaine suggest that fibers passing through the RVLM are involved in the maintenance of blood pressure in conscious animals during RVLM inhibition.
Resumo:
The present study determined the effect of an electrolytic lesion of the dorsal raphe nucleus (DRN) on water intake and sodium appetite. Male Wistar rats weighing 290-320 g with a lesion of the DRN (L-DRN), performed two days before experiments and confirmed by histology at the end of the experiments, presented increased sensitivity to the dehydration induced by fluid deprivation. The cumulative water intake of L-DRN rats reached 23.3 ± 1.9 ml (a 79% increase, N = 9) while sham-lesioned rats (SL-DRN) did not exceed 13.0 ± 1.0 ml (N = 11, P < 0.0001) after 5 h. The L-DRN rats treated with isoproterenol (300 µg kg-1 ml-1, sc) exhibited an increase in water intake that persisted throughout the experimental period (L-DRN, 15.7 ± 1.47 ml, N = 9 vs SL-DRN, 9.3 ± 1.8 ml, N = 11, P < 0.05). The L-DRN rats also showed an increased spontaneous sodium appetite during the entire period of assessment. The intake of 0.3 M NaCl after 12, 24, 36 and 72 h by the L-DRN rats was always higher than 20.2 ± 4.45 ml (N = 10), while the intake by SL-DRN was always lower than 2.45 ± 0.86 ml (N = 10, P < 0.00001). Sodium- and water-depleted L-DRN rats also exhibited an increased sodium appetite (13.9 ± 2.0 ml, N = 11) compared to SL-DRN (4.6 ± 0.64 ml, N = 11) after 120 min of observation (P < 0.02). The sodium preference of L-DRN rats in both conditions was always higher than that of SL-DRN rats. These results suggest that electrolytic lesion of the DRN overcomes a tonic inhibitory component of sodium appetite.
Resumo:
To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.
Resumo:
Previous studies have suggested a critical role for the vagi during the hypertonic resuscitation of hemorrhagic shocked dogs. Vagal blockade prevented the full hemodynamic and metabolic recovery and increased mortality. This interpretation, however, was challenged on the grounds that the blockade also abolished critical compensatory mechanisms and therefore the animals would die regardless of treatment. To test this hypothesis, 29 dogs were bled (46.0 ± 6.2 ml/kg, enough to reduce the mean arterial pressure to 40 mmHg) and held hypotensive for 45 min. After 40 min, vagal activity was blocked in a reversible manner (0ºC/15 min) and animals were resuscitated with 7.5% NaCl (4 ml/kg), 0.9% NaCl (32 ml/kg), or the total volume of shed blood. In the vagal blocked isotonic saline group, 9 of 9 dogs, and in the vagal blocked replaced blood group, 11 of 11 dogs survived, with full hemodynamic and metabolic recovery. However, in the hypertonic vagal blocked group, 8 of 9 dogs died within 96 h. Survival of shocked dogs which received hypertonic saline solution was dependent on vagal integrity, while animals which received isotonic solution or blood did not need this neural component. Therefore, we conclude that hypertonic resuscitation is dependent on a neural component and not only on the transient plasma volume expansion or direct effects of hyperosmolarity on vascular reactivity or changes in myocardial contraction observed immediately after the beginning of infusion.
Resumo:
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
Resumo:
Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA) in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol) and morphine (2.2 nmol) into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh) that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10) was blocked by previous administration of atropine (0.7 nmol; N = 7) or naloxone (1.3 nmol; N = 7) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9) into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11). All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.
Resumo:
The vasorelaxing activity of rotundifolone (ROT), a major constituent (63.5%) of the essential oil of Mentha x villosa, was tested in male Wistar rats (300-350 g). In isolated rat aortic rings, increasing ROT concentrations (0.3, 1, 10, 100, 300, and 500 µg/ml) inhibited the contractile effects of 1 µM phenylephrine and of 80 or 30 mM KCl (IC50 values, reported as means ± SEM = 184 ± 6, 185 ± 3 and 188 ± 19 µg/ml, N = 6, respectively). In aortic rings pre-contracted with 1 µM phenylephrine, the smooth muscle-relaxant activity of ROT was inhibited by removal of the vascular endothelium (IC50 value = 235 ± 7 µg/ml, N = 6). Furthermore, ROT inhibited (pD2 = 6.04, N = 6) the CaCl2-induced contraction in depolarizing medium in a concentration-dependent manner. In Ca2+-free solution, ROT inhibited 1 µM phenylephrine-induced contraction in a concentration-dependent manner and did not modify the phasic contractile response evoked by caffeine (20 mM). In conclusion, in the present study we have shown that ROT produces an endothelium-independent vasorelaxing effect in the rat aorta. The results further indicated that in the rat aorta ROT is able to induce vasorelaxation, at least in part, by inhibiting both: a) voltage-dependent Ca² channels, and b) intracellular Ca2+ release selectively due to inositol 1,4,5-triphosphate activation. Additional studies are required to elucidate the mechanisms underlying ROT-induced relaxation.
Resumo:
The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5), while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM) was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM) blocked the response to acetylcholine (3.0 nM-2.0 µM) only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.
Resumo:
The objective of the present study was to perform a spectral analysis of the electrical activity of the left colon of patients with hepatosplenic schistosomiasis. Thirty patients were studied, divided into 2 groups: group A was composed of 14 patients (9 males and 5 females) with hepatosplenic schistosomiasis and group B was composed of 16 female patients without schistosomiasis mansoni. Three pairs of electrodes were implanted in the left colon at the moment of the surgical treatment. The signals of the electric activity of the colon were captured after postoperative recovery from the ileus and fed into a computer by means of a DATAQ data collection system which identified and captured frequencies between 0.02 and 10 Hz. Data were recorded, stored and analyzed using the WINDAQ 200 software. For electrical analysis, the average voltage of the electrical wave in the three electrodes of all patients, expressed as millivolts (mV), was considered, together with the maximum and minimum values, the root mean square (RMS), the skewness, and the results of the fast Fourier transforms. The average RMS of the schistosomiasis mansoni patients was 284.007 mV. During a long period of contraction, the RMS increased in a statistically significant manner from 127.455 mV during a resting period to 748.959 mV in patients with schistosomiasis mansoni. We conclude that there were no statistically significant differences in RMS values between patients with schistosomiasis mansoni and patients without the disease during the rest period or during a long period of contraction.
Resumo:
We determined if the dorsal raphe nucleus (DRN) exerts tonic control of basal and stimulated sodium and water intake. Male Wistar rats weighing 300-350 g were microinjected with phosphate buffer (PB-DRN, N = 11) or 1 µg/0.2 µl, in a single dose, ibotenic acid (IBO-DRN, N = 9 to 10) through a guide cannula into the DRN and were observed for 21 days in order to measure basal sodium appetite and water intake and in the following situations: furosemide-induced sodium depletion (20 mg/kg, sc, 24 h before the experiment) and a low dose of dietary captopril (1 mg/g chow). From the 6th day after ibotenic acid injection IBO-DRN rats showed an increase in sodium appetite (12.0 ± 2.3 to 22.3 ± 4.6 ml 0.3 M NaCl intake) whereas PB-DRN did not exceed 2 ml (P < 0.001). Water intake was comparable in both groups. In addition to a higher dipsogenic response, sodium-depleted IBO-DRN animals displayed an increase of 0.3 M NaCl intake compared to PB-DRN (37.4 ± 3.8 vs 21.6 ± 3.9 ml 300 min after fluid offer, P < 0.001). Captopril added to chow caused an increase of 0.3 M NaCl intake during the first 2 days (IBO-DRN, 33.8 ± 4.3 and 32.5 ± 3.4 ml on day 1 and day 2, respectively, vs 20.2 ± 2.8 ml on day 0, P < 0.001). These data support the view that DRN, probably via ascending serotonergic system, tonically modulates sodium appetite under basal and sodium depletion conditions and/or after an increase in peripheral or brain angiotensin II.
Resumo:
Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg9BK (DBK). Our aim was to determine the potential expression of kinin B1 and B2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentration-contraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD2) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B1 and B2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.
Resumo:
The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5)-triphosphate (IP3) in colon dysmotility induced by multiple organ dysfunction syndrome (MODS) caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC) in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11) vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05). After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05). Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.
Resumo:
It is well known that the ventrolateral medulla contains neurons involved in the tonic and reflex control of the cardiovascular system. Two regions within the ventrolateral medulla were initially identified: the rostral ventrolateral medulla (RVLM) and the caudal ventrolateral medulla (CVLM). Activation of the RVLM raises arterial blood pressure and sympathetic nerve activity, and activation of the CVLM causes opposite effects. The RVLM premotor neurons project directly to sympathetic preganglionic neurons and are involved in the maintenance of resting sympathetic vasomotor tone. A significant proportion of tonic activity in the RVLM sympathetic premotor neurons is driven by neurons located in a third region of the ventrolateral medulla denominated caudal pressor area (CPA). The CPA is a pressor region located at the extreme caudal part of the ventrolateral medulla that appears to have an important role controlling the activity of RVLM neurons. In this brief review, we will address the importance of the ventrolateral medulla neurons for the generation of resting sympathetic tone related to arterial blood pressure control focusing on two regions, the RVLM and the CPA.