983 resultados para TETRAMETHYLAMMONIUM HYDROXIDE DIGESTION
Resumo:
In a system in which fertilization is recommended, diagnosis of soil K availability and the establishment of critical levels are made difficult by the possibility of a contribution of non-exchangeable forms of K for plant nutrition. Due to its magnitude, this contribution is well diagnosed in long term experiments and in those which compare fertilization systems with positive and negative balances in terms of replacement of the K extracted by plants. The objective of this study was to evaluate K availability in a Hapludalf under fertilization for sixteen years with the addition of K doses. The study was undertaken in an experiment set up in 1991 and carried out until 2007 in the experimental area of the Soil Department of the Federal University of Santa Maria (Universidade Federal de Santa Maria - UFSM), in Santa Maria (RS), Brazil. The soil was a Typic Hapludalf submitted to four doses of K (0, 60, 120 and 180 kg ha-1 K2O) and subdivided in the second year, when 60 kg ha-1 of K2O were reapplied in the subplots in 0, 1, 2 and 3 times. As of the fifth year, the procedure was repeated. Grain yield above ground dry matter and total K content contained in the plant tissue were evaluated. Soil samples were collected, oven dried, ground, passed through a sieve and submitted to exchangeable K analysis by the Mehlich-1 extractor; non-exchangeable K by boiling HNO3 1 mol L-1 and total K by HF digestion. Potassium fertilization guidelines should foresee the establishment of a critical level as of which the recommended dose should accompany crop needs, which coincides with the quantity exported by the grain, without there being the need for the creation of broad ranges of K availability to predict K fertilization. In adopting the K fertilization recommendations proposed in this manner, there will not be K translocation in the soil profile.
Resumo:
PURPOSE: Small intestinal submucosa is a xenogenic, acellular, collagen rich membrane with inherent growth factors that has previously been shown to promote in vivo bladder regeneration. We evaluate in vitro use of small intestinal submucosa to support the individual and combined growth of bladder urothelial cells and smooth muscle cells for potential use in tissue engineering techniques, and in vitro study of the cellular mechanisms involved in bladder regeneration. MATERIALS AND METHODS: Primary cultures of human bladder urothelial cells and smooth muscle cells were established using standard enzymatic digestion or explant techniques. Cultured cells were then seeded on small intestinal submucosa at a density of 1 x 105 cells per cm.2, incubated and harvested at 3, 7, 14 and 28 days. The 5 separate culture methods evaluated were urothelial cells seeded alone on the mucosal surface of small intestinal submucosa, smooth muscle cells seeded alone on the mucosal surface, layered coculture of smooth muscle cells seeded on the mucosal surface followed by urothelial cells 1 hour later, sandwich coculture of smooth muscle cells seeded on the serosal surface followed by seeding of urothelial cells on the mucosal surface 24 hours later, and mixed coculture of urothelial cells and smooth muscle cells mixed and seeded together on the mucosal surface. Following harvesting at the designated time points small intestinal submucosa cell constructs were formalin fixed and processed for routine histology including Masson trichrome staining. Specific cell growth characteristics were studied with particular attention to cell morphology, cell proliferation and layering, cell sorting, presence of a pseudostratified urothelium and matrix penetrance. To aid in the identification of smooth muscle cells and urothelial cells in the coculture groups, immunohistochemical analysis was performed with antibodies to alpha-smooth muscle actin and cytokeratins AE1/AE3. RESULTS: Progressive 3-dimensional growth of urothelial cells and smooth muscle cells occurred in vitro on small intestinal submucosa. When seeded alone urothelial cells and smooth muscle cells grew in several layers with minimal to no matrix penetration. In contrast, layered, mixed and sandwich coculture methods demonstrated significant enhancement of smooth muscle cell penetration of the membrane. The layered and sandwich coculture techniques resulted in organized cell sorting, formation of a well-defined pseudostratified urothelium and multilayered smooth muscle cells with enhanced matrix penetration. With the mixed coculture technique there was no evidence of cell sorting although matrix penetrance by the smooth muscle cells was evident. Immunohistochemical studies demonstrated that urothelial cells and smooth muscle cells maintain the expression of the phenotypic markers of differentiation alpha-smooth muscle actin and cytokeratins AE1/AE3. CONCLUSIONS: Small intestinal submucosa supports the 3-dimensional growth of human bladder cells in vitro. Successful combined growth of bladder cells on small intestinal submucosa with different seeding techniques has important future clinical implications with respect to tissue engineering technology. The results of our study demonstrate that there are important smooth muscle cell-epithelial cell interactions involved in determining the type of in vitro cell growth that occurs on small intestinal submucosa. Small intestinal submucosa is a valuable tool for in vitro study of the cell-cell and cell-matrix interactions that are involved in regeneration and various disease processes of the bladder.
Resumo:
Crohn's disease commonly affects women of childbearing age. Available data on Crohn's disease and pregnancy show that women with Crohn's disease can expect to conceive successfully, carry to term and deliver a healthy baby. Control of disease activity before conception and during pregnancy is critical, to optimize both maternal and fetal health. Generally speaking, pharmacological therapy for Crohn's disease during pregnancy is similar to pharmacological therapy for non-pregnant patients. Patients maintained in remission by way of pharmacological therapy should continue it throughout their pregnancy. Most drugs, including sulfasalazine, mesalazine, corticosteroids, and immunosuppressors such as azathioprine and 6-mercaptopurine, are safe, whereas methotrexate is contraindicated.
Resumo:
When remission of Crohn's disease is achieved, the next goal is to maintain long-term remission. Aminosalicylates may be recommended for maintenance remission, even though the results are less consistent than those observed in ulcerative colitis. The benefit is mainly observed in the post-surgical setting and in patients with ileitis, and with a prolonged disease duration. Corticosteroids are not effective in maintaining remission and should not be used for this indication. Azathioprine and 6-mercaptopurine are effective in maintaining remission. Maintenance benefits remain significant for patients who continued with the therapy for up to 5 years. Methotrexate has also been found to be effective in maintaining remission in Crohn's disease in patients who have responded acutely to methotrexate. Cyclosporine has not been found to be an effective maintenance agent. Mycophenolate mofetil could be considered a therapy in patients who are either allergic to azathioprine or in whom azathioprine failed to induce remission. The use of infliximab may change the future approach to maintenance therapy for Crohn's disease. Patients who responded clinically to infliximab have maintained their clinical response when receiving repeat infusions at 8-week intervals. In patients refractory to other therapies, infliximab may be effective in maintaining remission.
Resumo:
Nickel, although essential to plants, may be toxic to plants and animals. It is mainly assimilated by food ingestion. However, information about the average levels of elements (including Ni) in edible vegetables from different regions is still scarce in Brazil. The objectives of this study were to: (a) evaluate and optimize a method for preparation of vegetable tissue samples for Ni determination; (b) optimize the analytical procedures for determination by Flame Atomic Absorption Spectrometry (FAAS) and by Electrothermal Atomic Absorption (ETAAS) in vegetable samples and (c) determine the Ni concentration in vegetables consumed in the cities of Lorena and Taubaté in the Vale do Paraíba, State of São Paulo, Brazil. By means of the analytical technique for determination by ETAAS or FAAS, the results were validated by the test of analyte addition and recovery. The most viable method tested for quantification of this element was HClO4-HNO3 wet digestion. All samples but carrot tissue collected in Lorena contained Ni levels above the permitted by the Brazilian Ministry of Health. The most disturbing results, requiring more detailed studies, were the Ni concentrations measured in carrot samples from Taubaté, where levels were five times higher than permitted by Brazilian regulations.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
BACKGROUND: Normocalcemic primary hyperparathyroidism (PHPT-N) is a condition that may have similar long-term implications to primary hyperparathyroidism (PHPT); however, differential diagnosis and treatment for parathyroid disorders are not clearly defined. We investigated the effect of an oral peptone and an oral calcium load on calcium-regulating hormones in PHPT-N compared with PHPT and healthy controls to provide a new potential diagnostic tool. DESIGN: Case-control study. METHODS: We evaluated serum gastrin, PTH, ionized calcium, and phosphate responses to oral calcium (1 g) and peptone (10 g) load in 22 PHPT and 20 PHPT-N patients matched for PTH serum values. Moreover, 30 healthy subjects were enrolled as controls. In 12 patients for each group, we also performed the oral peptone test adding aluminum hydroxide (AH) to suppress phosphate absorption. RESULTS: In PHPT patients, PTH increased significantly 30 min after the oral peptone load, while no significant increase was found in PHPT-N and controls. After oral calcium load, PTH remained stable in PHPT while it decreased dramatically in PHPT-N patients, and ionized calcium increased significantly in each of the three groups. Peptones plus AH induced a blunted PTH increase in the three groups. CONCLUSIONS: Considering the marked difference in PTH response elicited by peptones in PHPT compared with PHPT-N, we suggest that the oral peptone test could be added to the diagnostic evaluation of PHPT patients. In case of absent response to peptones, patients should have their serum calcium levels assessed twice a year in accordance with recent guidelines.
Resumo:
We describe the transcriptional potentiation in estrogen responsive transcription extracts of the Xenopus vitellogenin B1 gene promoter through the formation of a positioned nucleosome. Nuclease digestion and hydroxyl radical cleavage indicate that strong, DNA sequence-directed positioning of a nucleosome occurs between -300 and -140 relative to the start site of transcription. Deletion of this DNA sequence abolishes the potentiation of transcription due to nucleosome assembly. The wrapping of DNA around the histone core of the nucleosome positioned between -300 and -140 creates a static loop in which distal estrogen receptor binding sites are brought close to proximal promoter elements. This might facilitate interactions between the trans-acting factors themselves and/or RNA polymerase. Such a nucleosome provides an example of how chromatin structure might have a positive effect on the transcription process.
Resumo:
Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate); pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.
Resumo:
RésuméLes champignons sont impliqués dans les cycles biogéochimiques de différentes manières. En particulier, ils sont reconnus en tant qu'acteurs clés dans la dégradation de la matière organique, comme fournisseurs d'éléments nutritifs via l'altération des minéraux mais aussi comme grands producteurs d'acide oxalique et de complexes oxalo-métalliques. Toutefois, peu de choses sont connues quant à leur contribution à la genèse d'autres types de minéraux, tel que le carbonate de calcium (CaCO3). Le CaCO3 est un minéral ubiquiste dans de nombreux écosystèmes et il joue un rôle essentiel dans les cycles biogéochimiques du carbone (C) et du calcium (Ca). Le CaCO3 peut être d'origine physico-chimique ou biogénique et de nombreux organismes sont connus pour contrôler ou induire sa biominéralisation. Les champignons ont souvent été soupçonnés d'être impliqué dans ce processus, cependant il existe très peu d'informations pour étayer cette hypothèse.Cette thèse a eu pour but l'étude de cet aspect négligé de l'impact des champignons dans les cycles biogéochimiques, par l'exploration de leur implication potentielle dans la formation d'un type particulier de CaCO3 secondaires observés dans les sols et dans les grottes des environnements calcaires. Dans les grottes, ces dépôts sont appelés moonmilk, alors que dans les sols on les appelle calcite en aiguilles. Cependant ces deux descriptions correspondent en fait au même assemblage microscopique de deux habitus particulier de la calcite: la calcite en aiguilles (au sens strict du terme cette fois-ci) et les nanofibres. Ces deux éléments sont des habitus aciculaires de la calcite, mais présentent des dimensions différentes. Leur origine, physico-chimique ou biologique, est l'objet de débats intenses depuis plusieurs années déjà.L'observation d'échantillons environnementaux avec des techniques de microscopie (microscopie électronique et micromorphologie), ainsi que de la microanalyse EDX, ont démontré plusieurs relations intéressantes entre la calcite en aiguilles, les nanofibres et des éléments organiques. Premièrement, il est montré que les nanofibres peuvent être organiques ou minérales. Deuxièmement, la calcite en aiguilles et les nanofibres présentent de fortes analogies avec des structures hyphales, ce qui permet de confirmer l'hypothèse de leur origine fongique. En outre, des expériences en laboratoire ont confirmé l'origine fongique des nanofibres, par des digestions enzymatiques d'hyphes fongiques. En effet, des structures à base de nanofibres, similaires à celles observées dans des échantillons naturels, ont pu être produites par cette approche. Finalement, des enrichissements en calcium ont été mesurés dans les parois des hyphes et dans des inclusions intrahyphales provenant d'échantillons naturels de rhizomorphes. Ces résultats suggèrent une implication de la séquestration de calcium dans la formation de la calcite en aiguilles et/ou des nanofibres.Plusieurs aspects restent à élucider, en particulier la compréhension des processus physiologiques impliqués dans la nucléation de calcite dans les hyphes fongiques. Cependant, les résultats obtenus dans cette thèse ont permis de confirmer l'implication des champignons dans la formation de la calcite en aiguilles et des nanofibres. Ces découvertes sont d'une grande importance dans les cycles biogéochimiques puisqu'ils apportent de nouveaux éléments dans le cycle couplé C-Ca. Classiquement, les champignons sont considérés comme étant impliqués principalement dans la minéralisation de la matière organique et dans l'altération minérale. Cette étude démontre que les champignons doivent aussi être pris en compte en tant qu'agents majeurs de la genèse de minéraux, en particulier de CaCO3. Ceci représente une toute nouvelle perspective en géomycologie quant à la participation des champignons au cycle biologique du C. En effet, la présence de ces précipitations de CaCO3 secondaires représente un court-circuit dans le cycle biologique du C puisque du C inorganique du sol se retrouve piégé dans de la calcite plutôt que d'être retourné dans l'atmosphère.AbstractFungi are known to be involved in biogeochemical cycles in numerous ways. In particular, they are recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of oxalic acid and metal-oxalate. However, little is known about their contribution to the genesis of other types of minerals such as calcium carbonate (CaCO3). Yet, CaC03 are ubiquitous minerals in many ecosystems and play an essential role in the biogeochemical cycles of both carbon (C) and calcium (Ca). CaC03 may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce calcite biomineralization. While fungi have often been suspected to be involved in this process, only scarce information support this hypothesis.This Ph.D. thesis aims at investigating this disregarded aspect of fungal impact on biogeochemical cycles by exploring their possible implication in the formation of a particular type of secondary CaC03 deposit ubiquitously observed in soils and caves from calcareous environments. In caves, these deposits are known as moonmilk, whereas in soils, they are known as Needle Fibre Calcite (NFC - sensu lato). However, they both correspond to the same microscopic assemblage of two distinct and unusual habits of calcite: NFC {sensu stricto) and nanofibres. Both features are acicular habits of calcite displaying different dimensions. Whether these habits are physicochemical or biogenic in origin has been under discussion for a long time.Observations of natural samples using microscopic techniques (electron microscopy and micromorphology) and EDX microanalyses have demonstrated several interesting relationships between NFC, nanofibres, and organic features. First, it has shown that nanofibres can be either organic or minera! in nature. Second, both nanofibres and NFC display strong structural analogies with fungal hyphal features, supporting their fungal origin. Furthermore, laboratory experiments have confirmed the fungal origin of nanofibres through an enzymatic digestion of fungal hyphae. Indeed, structures made of nanofibres with similar features as those observed in natural samples have been produced. Finally, calcium enrichments have been measured in both cell walls and intrahyphal inclusions of hyphae from rhizomorphs sampled in the natural environment. These results point out an involvement of calcium sequestration in nanofibres and/or NFC genesis.Several aspects need further investigation, in particular the understanding of the physiological processes involved in hyphal calcite nucleation. However, the results obtained during this study have allowed the confirmation of the implication of fungi in the formation of both NFC and nanofibres. These findings are of great importance regarding global biogeochemical cycles as they bring new insights into the coupled C and Ca cycles. Conventionally, fungi are considered to be involved in organic matter mineralization and mineral weathering. In this study, we demonstrate that they must also be considered as major agents in mineral genesis, in particular CaC03. This is a completely new perspective in geomycology regarding the role of fungi in the short-term (or biological) C cycle. Indeed, the presence of these secondary CaC03 precipitations represents a bypass in the short- term carbon cycle, as soil inorganic C is not readily returned to the atmosphere.
Resumo:
The management of luminal Crohn's disease, the most common form of initial presentation of the disease, depends on the location and the severity of the lesions. Mild to moderate disease represents a relatively large proportion of patients with a first flare of luminal disease, which may also be associated with perianal disease. As quality of life of these patients correlates with disease activity, adequate therapy is a central goal of the overall patient management. Treatment options include mainly sulfasalazine, budesonide and systemic steroids, while the role of mesalazine and antibiotics remains controversial. The role of biological therapies in mild to moderate disease has not been thoroughly evaluated and will not be discussed here.
Resumo:
Symptomatic gastroduodenal manifestations of Crohn's disease (CD) are rare, with less than 4% of patients being clinically symptomatic. Gastroduodenal involvement may, however, be found endoscopically in 20% and in up to 40% of cases histologically, most frequently as Helicobacter pylori-negative focal gastritis, usually in patients with concomitant distal ileal disease. In practice, the activity of concomitant distal CD usually determines the indication for therapy, except in the presence of obstructive gastroduodenal symptoms. With the few data available, it seems correct to say that localized gastroduodenal disease should be treated with standard medical therapy used for more distal disease, with the exception of sulfasalazine and mesalanine with pH-dependent release. Presence of symptoms of obstruction needs aggressive therapy. If medical therapy with steroids and immunomodulatory drugs does not alleviate the symptoms, balloon dilation and surgery are the options to consider.
Resumo:
The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.
Resumo:
In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1) and Ion Exchange Resin (IER), from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m). Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.
Resumo:
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.