992 resultados para Synthetic images
Resumo:
Objectives: To improve the integration of MRI with radiotherapy treatment planning, our department fabricated a flat couch top for our MR scanner. Setting up using this couch top meant that the patients were physically higher up in the scanner and, posteriorly, a gap was introduced between the patient and radiofrequency coil.
Resumo:
We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L sun = 4.92 ± 0.20 and T eff = 6000 ± 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3 M sun. The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess Ha emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.
Resumo:
Purpose. The purpose of this study was to examine the effect of synthetic endothelin (ET)-1 peptides with antigenic potential for binding and biologic activity using an in vitro model of microvascular pericytes.
Resumo:
Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification.
Resumo:
For the majority of adults, the media constitute their main source of information about science and science-related matters impacting on society. To help prepare young people to engage with science in the media, teachers are being exhorted to equip their students with the knowledge, skills, and attitudes to respond critically to science-related news reports. Typically, such reports comprise not only text, but also visual elements. These images are not simply adjuncts to the written word; they are integral to meaning-making. Though science teachers make considerable use of newspaper images, they tend to view these representations unproblematically, underestimating their potential ambiguity, complexity, and role in framing media messages. They rarely aim to develop students’ ability to ‘read’, critically, such graphics. Moreover, research into how this might be achieved is limited and, consequently, research-informed guidance which could support this instruction is lacking. This paper describes a study designed to formulate a framework for such teaching. Science communication scholars, science journalists and media educators with acknowledged relevant expertise were surveyed to ascertain what knowledge, skills, and attitudes they deemed useful to engagement with science related news images. Their proposals were recast as learning intentions (instructional objectives), and science and English teachers collaborated to suggest which could be addressed with secondary school students and the age group best suited to their introduction. The outcome is an inventory of learning intentions on which teachers could draw to support their planning of instructional sequences aimed at developing students’ criticality in respect of the totality of science news reports.
Resumo:
Within the framework of a European Union (EU) research project entitled