884 resultados para Synthetic cannabinoids
Resumo:
Degradation of a synthetic tanning agent CNSF (a condensation product of 2-naphthatenesulfonic acid (2-NSA) and formaldehyde) by four activated sludges, two previously characterised bacterial strains, Arthrobacter sp. 2AC and Comamonas sp. 4BC, and the fungus Cunninghamella polymorpha, was studied in batch culture at 25 degrees C by determining the changes in the concentrations of CNSF and its component monomers and oligomers (n2-n11). The loss of individual oligomers was correlated with the length of the NSA-CH2 chain. Approximately 25% of the total CNSF was degraded (i.e. mineralised) by the microbes contained in the four activated sludges and by the two bacterial isolates but with different lag phases and at different overall rates. The decline in CNSF concentration was due almost entirely to the biodegradation of the monomers (34.3% of CNSF) and, in particular, 2-NSA (27% of CNSF). There was no change in the n2-n 11 components. The growth of C. polymorpha, on the other hand, arose from extracellular depolymerisation of CNSF oligomers and the biodegradation of the lower molecular mass products. Between 38% and 42% of total CNSF was degraded by C. polymorpha at 25 degrees C. The order of oligomer degradation was inversely related to degree of polymerisation. Eighty percent and 90% of the n4 and n5 and 100% oligomers n6-n11 were degraded after 120 h. At a higher temperature (37 degrees C) oligomers n4-n11 were degraded completely after 120 h. A combination of biodegradation (75%) and sorption to fungal biomass (25%) accounted for the measured loss of all oligomers from the solution phase. The CNSF degradation rates and the volume of fungal biomass produced (and therefore the extent of biosorption) were dependent on the presence of a second carbon source (both optimum at glucose 5 g/l). This is the first report that identifies and distinguishes between depolymerisation, sorption and biodegradation processes in the removal of CNSF and its component oligomers. The use of combinations of the depolymerising fungus C. polymorpha, and the monomer-degrading bacteria, Arthrobacter sp. 2AC and Comamonas sp. 4BC, have potential for wastewater treatment.
Resumo:
Pharmacologists have generally been prejudiced against prostanoids, uncritically accepting their suppression as desirable therapy, especially for ‘quick-fix’ analgesia. This myopic perception for a long time ignored (a) the essentiality of prostanoid precursors in nutrition, (b) the physiological protective functions of natural prostaglandins (PGs) (vasculature, stomach, kidney), (c) resolution of inflammation after the expression of COX-2 and (d) increasing therapeutic use of either synthetic PGs (for erectile dysfunction, opthalmic disorders, inducing parturition, etc) or their natural precursors, e.g., ω3-rich polyunsaturated oils, to treat arthritis. Experimental studies in rats have indicated that prostaglandins (E series) are (i) useful, perhaps auto-regulators of established immunoreactivity and (ii) able to amplify (or even induce) anti-inflammatory activity with other agents. Furthermore, anti-prostanoid therapy (APT) can be arthritigenic!!, interfering with the acquisition of tolerance to some arthritigens. For patients with rheumatoid arthritis this additional side-effect of APT, barely recognised to date, may actually perpetuate their arthritis by impairing prostanoid-mediated remission processes. Hopefully, recent adverse publicity about COX-2 inhibitory drugs might stimulate serious re-assessment of some traditional anti-inflammatory therapies with low APT activity for the management of both acute pain (non-addictive cannabinoids, celery seed, etc.) and chronic inflammation, e.g., Lyprinol® (a mussel lipid extract).
Resumo:
The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the specific quantum yield: the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein. (c) 2005 American Institute of Physics.
Resumo:
Previously reported excitation spectra for eumelanin are sparse and inconsistent. Moreover, these studies have failed to account for probe beam attenuation and emission reabsorption within the samples, making them qualitative at best. We report for the first time quantitative excitation spectra for synthetic eumelanin, acquired for a range of solution concentrations and emission wavelengths. Our data indicate that probe beam attenuation and emission reabsorption significantly affect the spectra even in low-concentration eumelanin solutions and that previously published data do not reflect the true excitation profile. We apply a correction procedure (previously applied to emission spectra) to account for these effects. Application of this procedure reconstructs the expected relationship of signal intensity with concentration, and the normalized spectra show a similarity in form to the absorption profiles. These spectra reveal valuable information regarding the photophysics and photochemistry of eumelanin. Most notably, an excitation peak at 365 urn (3.40 eV), whose position is independent of emission wavelength, is possibly attributable to a 5,6-dihydroxyindole-2-carboxylic acid (DHICA) component singly linked to a polymeric structure.
Resumo:
New copper(II) complexes of general empirical formula, Cu(mpsme)X center dot xCH(3)COCH(3) (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N-3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature mu(eff) values for the complexes are in the range 1.75-2.1 mu(beta) typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N-3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] center dot 0.5CH(3)COCH(3)}(2) and [Cu(mpsme)NCS](n) complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3]0.5CH(3)COCH(3)}(2) complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)](n) complex has a novel staircase-like one dimensional polymeric structure in which the NCS- ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Both the New Zealand Ministry of Education's Literacy Experts Group and the Australian National Inquiry into the Teaching of Literacy have recently acknowledged the centrality of systematic instruction in synthetic phonics to early reading instruction, but this conclusion remains contentious in some circles. This paper briefly summarises empirical research in basic psychology and evidence-based evaluation studies supporting the inclusion of systematic synthetic phonics instruction within the early reading curriculum, allowing practising psychologists to develop an informed opinion on this issue.
Resumo:
This paper represents an overview of the spectroscopic studies of both synthetic and naturally occurring beidellites performed as part of my research over the past 16 years. It shows that detailed information on the local structure of beidellite and changes in this local structure upon heating can be obtained by combining a range of spectroscopic techniques such as mid-infrared, near-infrared, infrared emission, Raman, nuclear magnetic resonance and X-ray photoelectron spectroscopy.
Resumo:
We report a detailed photoluminescence study of cysteinyldopa-melanin ( CDM), the synthetic analogue of pheomelanin. Emission spectra are shown to be a far more sensitive probe of CDM's spectroscopic behavior than are absorption spectra. Although CDM and dopa-melanin ( DM, the synthetic analogue of eumelanin) have very similar absorption spectra, we find that they have very different excitation and emission characteristics; CDM has two distinct photoluminescence peaks that do not shift with excitation wavelength. Additionally, our data suggest that the radiative quantum yield of CDM is excitation energy dependent, an unusual property among biomolecules that is indicative of a chemically disordered system. Finally, we find that the radiative quantum yield for CDM is similar to 0.2%, twice that of DM, although still extremely low. This means that 99.8% of the energy absorbed by CDM is dissipated via nonradiative pathways, consistent with its role as a pigmentary photoprotectant.
Resumo:
Spectroscopic studies of pheomelanin and its constituents have been sparse. These data present what is by far the most complete description of the fluorescence characteristics of synthetic pheomelanin. Emission spectra between 260 and 600 nm were acquired,for excitation wavelengths between 250 and 500 nm at 1-nm intervals. A quantum yield map is also presented, correcting the fluorescence intensities for differences in species concentration and molar absorptivity. These fluorescence features exhibit interesting similarities and differences to eumelanin, and these data are interpreted with respect to possible chemical structures. Overall, these data suggest that pheomelanin oligomers may be more tightly coupled than those of eumelanin. Finally, the quantum yield is shown to be on the order of 10(-4) and exhibit a complex dependence on excitation energy, varying by a factor of 4 across the energies employed here. (c) 2006 Wiley Periodicals, Inc.