950 resultados para Surface science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpine glacier samples were collected in four contrasting regions to measure supraglacial dust and debris geochemical composition. A total of 70 surface glacier ice, snow and debris samples were collected in 2009 and 2010 in Svalbard, Norway, Nepal and New Zealand. Trace elemental abundances in snow and ice samples were measured via inductively coupled plasma mass spectrometry (ICP-MS). Supraglacial debris mineral, bulk oxide and trace element composition were determined via X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF). A total of 45 elements and 10 oxide compound abundances are reported. The uniform data collection procedure, analytical measurement methods and geochemical comparison techniques are used to evaluate supraglacial dust and debris composition variability in the contrasting glacier study regions. Elemental abundances revealed sea salt aerosol and metal enrichment in Svalbard, low levels of crustal dust and marine influences to southern Norway, high crustal dust and anthropogenic enrichment in the Khumbu Himalayas, and sulfur and metals attributed to quiescent degassing and volcanic activity in northern New Zealand. Rare earth element and Al/Ti elemental ratios demonstrated distinct provenance of particulates in each study region. Ca/S elemental ratio data showed seasonal denudation in Svalbard and Norway. Ablation season atmospheric particulate transport trajectories were mapped in each of the study regions and suggest provenance pathways. The in situ data presented provides first order glacier surface geochemical variability as measured from four diverse alpine glacier regions. This geochemical surface glacier data is relevant to glaciologic ablation rate understanding as well as satellite atmospheric and land-surface mapping techniques currently in development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series of alkenone unsaturation indices gathered along the California margin reveal large (4° to 8°C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new calibration database of census counts of organic-walled dinoflagellate cyst (dinocyst) assemblages has been developed from the analyses of surface sediment samples collected at middle to high latitudes of the Northern Hemisphere after standardisation of taxonomy and laboratory procedures. The database comprises 940 reference data points from the North Atlantic, Arctic and North Pacific oceans and their adjacent seas, including the Mediterranean Sea, as well as epicontinental environments such as the Estuary and Gulf of St. Lawrence, the Bering Sea and the Hudson Bay. The relative abundance of taxa was analysed to describe the distribution of assemblages. The best analogue technique was used for the reconstruction of Last Glacial Maximum (LGM) sea-surface temperature and salinity during summer and winter, in addition to sea-ice cover extent, at sites from the North Atlantic (n=63), Mediterranean Sea (n=1) and eastern North Pacific (n=1). Three of the North Atlantic cores, from the continental margin of eastern Canada, revealed a barren LGM interval, probably because of quasi-permanent sea ice. Six other cores from the Greenland and Norwegian seas were excluded from the compilation because of too sparse assemblages and poor analogue situation. At the remaining sites (n= 54), relatively close modern analogues were found for most LGM samples, which allowed reconstructions. The new LGM results are consistent with previous reconstructions based on dinocyst data, which show much cooler conditions than at present along the continental margins of Canada and Europe, but sharp gradients of increasing temperature offshore. The results also suggest low salinity and larger than present contrasts in seasonal temperatures with colder winters and more extensive sea-ice cover, whereas relatively warm conditions may have prevailed offshore in summer. From these data, we hypothesise low thermal inertia in a shallow and low-density surface water layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fresh deposits above the margins of Reedy Glacier show that maximum ice levels during the last glaciation were several hundred meters above present near the glacier mouth and converged to less than 60 m above the present-day surface at the head of the glacier. Exposure ages of samples from five sites along its margin show that Reedy Glacier and its tributaries thickened asynchronously between 17 and 7 kyr BP At the Quartz Hills, located midway along the glacier, maximum ice levels were reached during the period 17-14 kyr BP. Farther up-glacier the ice surface reached its maximum elevation more recently: 14.7-10.2 kyr BP at the Caloplaca Hills; 9.1-7.7 kyr BP at Mims Spur; and around 7 kyr BP at Hatcher Bluffs. We attribute this time-transgressive behavior to two different processes: At the glacier mouth, growth of grounded ice and subsequent deglaciation in the Ross Sea embayment caused a wave of thickening and then thinning to propagate up-glacier. During the Lateglacial and Holocene, increased snow accumulation on the East Antarctic Ice Sheet caused transient thickening at the head of the glacier. An important result of this work is that moraines deposited along Reedy Glacier during the last ice age cannot be correlated to reconstruct a single glacial maximum longitudinal profile. The profile steepened during deglaciation of the Ross Sea, thinning at the Quartz Hills after 13 kyr BP while thickening upstream. Near its confluence with Mercer Ice Stream, rapid thinning beginning prior to 7-8 kyr BP reduced the level of Reedy Glacier to close to its present level. Thinning over the past 1000 years has lowered the glacier by less than 20 m.