961 resultados para Supervised pattern recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O reconhecimento de padões é uma área da inteligência computacional que apoia a resolução de problemas utilizando ferramentas computacionais. Dentre esses problemas podem ser citados o reconhecimento de faces, a identificação de impressões digitais e a autenticação de assinaturas. A autenticação de assinaturas de forma automática tem sua relevância pois está ligada ao reconhecimento de indivíduos e suas credenciais em sistemas complexos e a questões financeiras. Neste trabalho é apresentado um estudo dos parâmetros do Dynamic Time Warping, um algoritmo utilizado para alinhar duas assinaturas e medir a similaridade existente entre elas. Variando-se os principais parâmetros desse algoritmo, sobre uma faixa ampla de valores, foram obtidas as médias dos resultados de erros na classificação, e assim, estas médias foram avaliadas. Com base nas primeiras avaliação, foi identificada a necessidade de se calcular um desses parâmetros de forma dinâmica, o gap cost, a fim de ajustá-lo no uso de uma aplicação prática. Uma proposta para a realização deste cálculo é apresentada e também avaliada. É também proposta e avaliada uma maneira alternativa de representação dos atributos da assinatura, de forma a considerar sua curvatura em cada ponto adquirido no processo de aquisição, utilizando os vetores normais como forma de representação. As avaliações realizadas durante as diversas etapas do estudo consideraram o Equal Error Rate (EER) como indicação de qualidade e as técnicas propostas foram comparadas com técnicas já estabelecidas, obtendo uma média percentual de EER de 3,47%.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária

Relevância:

80.00% 80.00%

Publicador:

Resumo:

计算机技术和数学方法、手段应用于生物标本鉴定的研究工作在国外开展已有多年,但在国内却并没有许多人涉猎,也没有受到足够的重视。 鉴于这一领域的重要性及其实际意义,本文综合、扩充、改进了多元统计判别分析和模糊模式识别中的多种定量化判别方法,初步在计算机上实现了一个可用于生物标本鉴定或其它与判别、识别有关方面的系统,并将其用于桔梗科沙参属三个种:泡沙参、多歧沙参和裂叶沙参及菖蒲科中两个种的标本鉴定上面,获得了比较满意的判别效果。同时,为了弥补数量化标本鉴定的不足,本文作者还设计开发了一个描述性的基于检索表的人机交互式的标本鉴定模块。另外,本系统还包括模糊系统聚类和典型相关分析等模块,可供生物分类及其它定量分析运算时选用。 对于以上各种判别、识别方法的差异及优劣,文中根据实例做出了综合分析和比较,并认为在所有方法当中,逐步判别法和模糊协方差识别法最适宜于生物标本鉴定之用。最后,作者展望了未来计算机用于生物标本鉴定的前景。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.