999 resultados para Sucrose synthesis
Resumo:
Maintenance of cell homeostasis and regulation of cell proliferation depend importantly on regulating the process of protein synthesis. Many disease states arise when disregulation of protein synthesis occurs. This review focuses on mechanisms of translational control and how disregulation results in cell malignancy. Most translational controls occur during the initiation phase of protein synthesis, with the initiation factors being the major target of regulation through their phosphorylation. In particular, the recruitment of mRNAs through the m7G-cap structure and the binding of the initiator methionyl-tRNAi are frequent targets. However, translation, especially of specific mRNAs, may also be regulated by sequestration into processing bodies or stress granules, by trans-acting proteins or by microRNAs. When the process of protein synthesis is hyper-activated, weak mRNAs are translated relatively more efficiently, leading to an imbalance of cellular proteins that promotes cell proliferation and malignant transformation. This occurs, for example, when the cap-binding protein, eIF4E, is overexpressed, or when the methionyl-tRNAi-binding factor, eIF2, is too active. In addition, enhanced activity of eIF3 contributes to oncogenesis. The importance of the translation initiation factors as regulators of protein synthesis and cell proliferation makes them potential therapeutic targets for the treatment of cancer.
Resumo:
Hyperuricemia is associated with renal stones, not only consisting of uric acid (UrAc) but also of calcium oxalate (CaOx). Glycosaminoglycans (GAGs) are well-known inhibitors of growth and aggregation of CaOx crystals. We analyzed the effect of noncrystalline UrAc on GAG synthesis in tubular distal cells. MDCK (Madin-Darby canine kidney) cells were exposed to noncrystalline UrAc (80 µg/mL) for 24 h. GAGs were labeled metabolically and characterized by agarose gel electrophoresis. The expression of proteoglycans and cyclooxygenase 2 (COX-2) was assessed by real-time PCR. Necrosis, apoptosis and prostaglandin E2 (PGE2) were determined by acridine orange, HOESCHT 33346, and ELISA, respectively. CaOx crystal endocytosis was evaluated by flow cytometry. Noncrystalline UrAc significantly decreased the synthesis and secretion of heparan sulfate into the culture medium (UrAc: 2127 ± 377; control: 4447 ± 730 cpm) and decreased the expression of perlecan core protein (UrAc: 0.61 ± 0.13; control: 1.07 ± 0.16 arbitrary units), but not versican. Noncrystalline UrAc did not induce necrosis or apoptosis, but significantly increased COX-2 and PGE2 production. The effects of noncrystalline UrAc on GAG synthesis could not be attributed to inflammatory actions because lipopolysaccharide, as the positive control, did not have the same effect. CaOx was significantly endocytosed by MDCK cells, but this endocytosis was inhibited by exposure to noncrystalline UrAc (control: 674.6 ± 4.6, CaOx: 724.2 ± 4.2, and UrAc + CaOx: 688.6 ± 5.4 geometric mean), perhaps allowing interaction with CaOx crystals. Our results indicate that UrAc decreases GAG synthesis in MDCK cells and this effect could be related to the formation of UrAc and CaOx stones.
Resumo:
During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.
Resumo:
Effective statin therapy is associated with a marked reduction of cardiovascular events. However, the explanation for full benefits obtained for LDL cholesterol targets by combined lipid-lowering therapy is controversial. Our study compared the effects of two equally effective lipid-lowering strategies on markers of cholesterol synthesis and absorption. A prospective, open label, randomized, parallel design study, with blinded endpoints, included 116 subjects. We compared the effects of a 12-week treatment with 40 mg rosuvastatin or the combination of 40 mg simvastatin/10 mg ezetimibe on markers of cholesterol absorption (campesterol and β-sitosterol), synthesis (desmosterol), and their ratios to cholesterol. Both therapies similarly decreased total and LDL cholesterol, triglycerides and apolipoprotein B, and increased apolipoprotein A1 (P < 0.05 vs baseline for all). Simvastatin/ezetimibe increased plasma desmosterol (P = 0.012 vs baseline), and decreased campesterol and β-sitosterol (P < 0.0001 vs baseline for both), with higher desmosterol (P = 0.007) and lower campesterol and β-sitosterol compared to rosuvastatin, (P < 0.0001, for both). In addition, rosuvastatin increased the ratios of these markers to cholesterol (P < 0.002 vs baseline for all), whereas simvastatin/ezetimibe significantly decreased the campesterol/cholesterol ratio (P = 0.008 vs baseline) and tripled the desmosterol/cholesterol ratio (P < 0.0001 vs baseline). The campesterol/cholesterol and β-sitosterol/cholesterol ratios were lower, whereas the desmosterol/cholesterol ratio was higher in patients receiving simvastatin/ezetimibe (P < 0.0001 vs rosuvastatin, for all). Pronounced differences in markers of cholesterol absorption and synthesis were observed between two equally effective lipid-lowering strategies.
Resumo:
To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.
Resumo:
Sucrose solution is recommended as relevant pain relief management in neonates during acute painful procedures; however, only a few studies have analyzed the potentially adverse effects of sucrose administration to preterm neonates. The goal of this study was to examine the potential side effects of sucrose for pain relief in preterm infants, assessing feeding and weight gain during hospitalization and their feeding patterns postdischarge. The study sample consisted of 43 preterm neonates divided into two groups: a sucrose group (SG, n=18) and a control group (CG, n=25) in which no sucrose was administered. The SG received 0.5 mL/kg 25% oral sucrose for 2 min prior to all acute painful procedures during three consecutive days. A prospective review of medical charts was performed for all samples. The study was done prior to implementation of the institutional sucrose guidelines as a routine service, and followed all ethical requirements. There were no statistically significant differences between groups in terms of weight gain, length of stay with orogastric tubes, and parenteral feeding. Postdischarge, infant nutritional intake included feeding human milk to 67% of the SG and 74% of the CG. There were no statistically significant differences between groups regarding human milk feeding patterns postdischarge. Neonate feeding patterns and weight gain were unaffected following the short-term use of sucrose for pain relief.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
In the last decades, the chemical synthesis of short oligonucleotides has become an important aspect of study due to the discovery of new functions for nucleic acids such as antisense oligonucleotides (ASOs), aptamers, DNAzymes, microRNA (miRNA) and small interfering RNA (siRNA). The applications in modern therapies and fundamental medicine on the treatment of different cancer diseases, viral infections and genetic disorders has established the necessity to develop scalable methods for their cheaper and easier industrial manufacture. While small scale solid-phase oligonucleotide synthesis is the method of choice in the field, various challenges still remain associated with the production of short DNA and RNA-oligomers in very large quantities. On the other hand, solution phase synthesis of oligonucleotides offers a more predictable scaling-up of the synthesis and is amenable to standard industrial manufacture techniques. In the present thesis, various protocols for the synthesis of short DNA and RNA oligomers have been studied on a peracetylated and methylated β-cyclodextrin, and also on a pentaerythritol-derived support. On using the peracetylated and methylated β-cyclodextrin soluble supports, the coupling cycle was simplified by replacement of the typical 5′-O-(4,4′-dimethoxytrityl) protecting group with an acid-labile acetal-protected 5′-O-(1-methoxy-1-methylethyl) group, which upon acid-catalyzed methanolysis released easily removable volatile products. For this reason monomeric building blocks 5′-O-(1-methoxy-1-methylethyl) 3′-(2-cyano-ethyl-N,N-diisopropylphosphoramidite) were synthesized. Alternatively, on using the precipitative pentaerythritol support, novel 2´-O-(2-cyanoethyl)-5´-O-(1-methoxy-1-methylethyl) protected phosphoramidite building blocks for RNA synthesis have been prepared and their applicability by the synthesis of a pentamer was demonstrated. Similarly, a method for the preparation of short RNAs from commercially available 5´-O-(4,4´-dimethoxytrityl)-2´-O-(tert-butyldimethyl-silyl)ribonucleoside 3´-(2-cyanoethyl-N,N-diisopropylphosphoramidite) building blocks has been developed
Resumo:
A method to synthesize ethyl β-ᴅ-glucopyranoside (BEG) was searched. Feasibility of different ion exchange resins was examined to purify the product from the synthetic binary solution of BEG and glucose. The target was to produce at least 50 grams of 99 % pure BEG with a scaled up process. Another target was to transfer the batch process into steady-state recycle chromatography process (SSR). BEG was synthesized enzymatically with reverse hydrolysis utilizing β-glucosidase as a catalyst. 65 % of glucose reacted with ethanol into BEG during the synthesis. Different ion exchanger based resins were examined to separate BEG from glucose. Based on batch chromatography experiments the best adsorbent was chosen between styrene based strong acid cation exchange resins (SAC) and acryl based weak acid cation exchange resins (WAC). CA10GC WAC resin in Na+ form was chosen for the further separation studies. To produce greater amounts of the product the batch process was scaled up. The adsorption isotherms for the components were linear. The target purity was possible to reach already in batch without recycle with flowrate and injection size small enough. 99 % pure product was produced with scaled-up batch process. Batch process was transferred to SSR process utilizing the data from design pulse chromatograms and Matlab simulations. The optimal operating conditions for the system were determined. Batch and SSR separation results were compared and by using SSR 98 % pure products were gained with 40 % higher productivity and 40 % lower eluent consumption compared to batch process producing as pure products.
Resumo:
Rice flour was processed by extrusion cooking in the presence of variable contents of water and sucrose. The process was carried out in a twin-screw extruder under the conditions given by a centre rotational experimental design of second order. The effects of the independent variables, water content (27.9 to 42.1%), and sucrose content (0.1 to 19.9%) on the physicochemical properties of the extrudates were investigated. The water absorption index (WAI), water solubility index (WSI), volumetric expansion index (VEI), and bulk density (BD) were determined as dependent variables. BD was determined for samples before and after frying. An increase in water contents resulted in higher WAI and VEI, and lower WSI and BD for extrudates before and after frying. Higher sucrose levels led to increased values of WAI and VEI and to reduced values of WSI and BD. Both independent variables had significant influence on the physicochemical properties of rice flour extrudates. However, the sucrose content was the most significant. The interaction between these two independent variables and their quadratic effect were also important for the responses studied.
Resumo:
Listeria monocytogenes is a foodborne pathogen which may survive in biofilms and persist in food processing plants. In this study, the ability of Leuconostoc mesenteroides (bac+ and bac-) to inhibit biofilm formation by L. monocytogenes ATCC 19115 was studied with stainless steel coupons immersed in BHI broth and BHI broth plus sucrose in combination with the Lactic Acid Bacteria (LAB). Adhered cells were collected with swabs and enumerated on selective agars (Oxford for listeria and MRS for leuconostoc). Leuconostoc mesenteroides bac+ in co-culture with L. monocytogenes was effective to inhibit biofilm formation by listeria for up to 3 hours of incubation, but at 24 hours, biofilm was present in all conditions tested, as confirmed by observations of stainless steel coupons under Scanning Electron Microscopy (SEM). It was also observed that in the presence of L. mesenteroides bac+ in BHI plus sucrose, a high number of elongated cells of L. monocytogenes was present, which may indicate an adaptation response of the pathogen to stress conditions with important implications for food safety.
Resumo:
The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG) in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s) of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm) of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.
Resumo:
This paper aims to evaluate the physicochemical characteristics, sensory acceptance, and purchase intent of acerola nectar sweetened with sucrose and other sweeteners (neotame, sucralose and stevia extracts with 40%, 60%, 80%, and 95% rebaudioside A). The analyses were carried out for pH, soluble solids, total titratable acidity, ascorbic acid, and colorimetry (L*a*b). The acceptance test was performed by 120 consumers who evaluated the appearance, aroma, flavor, texture, and overall impression of the samples using a 9-cm unstructured hedonic scale. Furthermore, the consumers were asked to rate overall purchase intent along the scale anchored with (1) "would definitely not purchase" to (5) "would definitely purchase." The results were evaluated using analysis of variance/Tukey test and the internal preference mapping technique. The acerola nectar samples did not differ significantly (p>0.05) between themselves in terms of vitamin C content and total titratable acidity. As for appearance and aroma, there was no significant difference (p>0.05) between the samples, and as for flavor and overall impression, the most accepted samples were those with sucrose and sucralose. The internal preference mapping indicated that the most accepted samples were those with sucrose, sucralose, and neotame were. The highest frequency of positive purchase intent scores was observed for sucrose and sucralose.
Resumo:
AbstractThe objective of this study was to evaluate the genetic variability for synthesis of bioactive compounds in pepper (Capsicum annuum, Solanaceae). Total phenolics, anthocyanins, carotenoids and antioxidant activity were evaluated in 14 accessions of Capsicum annuum from the Capsicum Genebank of Embrapa Temperate Agriculture (Pelotas – RS, Brazil). Thirty plants of each accession were cultivated in the field during spring and summer. The experimental design was a complete randomized block with 14 treatments (accessions) and three replications. The laboratory evaluations followed the same experimental design to field, but with two repetitions more. Seeds were discarded and opposite longitudinal portions of fruits were manually prepared for chemical analyzes. The data obtained showed high genetic variability for phenolics, anthocyanins, carotenoids and antioxidant activity. The P39, P77, P119, P143 and P302 accessions exhibited the highest levels of antioxidants, which are strongly indicated to be used in breeding programs of Capsicum peppers.