992 resultados para Submarine geology
Resumo:
Velocity and absorption tomograms are the two most common forms of presentation of radar tomographic data. However, mining personnel, geophysicists included, are often unfamiliar with radar velocity and absorption. In this paper, general formulae are introduced, relating velocity and attenuation coefficient to conductivity and dielectric constant. The formulae are valid for lossy media as well as high-resistivity materials. The transformation of velocity and absorption to conductivity and dielectric constant is illustrated via application of the formulae to radar tomograms from the Hellyer zinc-lead-silver mine, Tasmania, Australia. The resulting conductivity and dielectric constant tomograms constructed at Hellyer demonstrated the potential of radar tomography to delineate sulphide ore zones. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The cost and risk associated with mineral exploration in Australia increases significantly as companies move into deeper regolith-covered terrain. The ability to map the bedrock and the depth of weathering within an area has the potential to decrease this risk and increase the effectiveness of exploration programs. This paper is the second in a trilogy concerning the Grant's Patch area of the Eastern Goldfields. The recent development of the VPmg potential field inversion program in conjunction with the acquisition of high-resolution gravity data over an area with extensive drilling provided an opportunity to evaluate three-dimensional gravity inversion as a bedrock and regolith mapping tool. An apparent density model of the study area was constructed, with the ground represented as adjoining 200 m by 200 m vertical rectangular prisms. During inversion VPmg incrementally adjusted the density of each prism until the free-air gravity response of the model replicated the observed data. For the Grant's Patch study area, this image of the apparent density values proved easier to interpret than the Bouguer gravity image. A regolith layer was introduced into the model and realistic fresh-rock densities assigned to each basement prism according to its interpreted lithology. With the basement and regolith densities fixed, the VPmg inversion algorithm adjusted the depth to fresh basement until the misfit between the calculated and observed gravity response was minimised. The resulting geometry of the bedrock/regolith contact largely replicated the base of weathering indicated by drilling with predicted depth of weathering values from gravity inversion typically within 15% of those logged during RAB and RC drilling.
Resumo:
Pasminco Century Mine has developed a geophysical logging system to provide new data for ore mining/grade control and the generation of Short Term Models for mine planning. Previous work indicated the applicability of petrophysical logging for lithology prediction, however, the automation of the method was not considered reliable enough for the development of a mining model. A test survey was undertaken using two diamond drilled control holes and eight percussion holes. All holes were logged with natural gamma, magnetic susceptibility and density. Calibration of the LogTrans auto-interpretation software using only natural gamma and magnetic susceptibility indicated that both lithology and stratigraphy could be predicted. Development of a capability to enforce stratigraphic order within LogTrans increased the reliability and accuracy of interpretations. After the completion of a feasibility program, Century Mine has invested in a dedicated logging vehicle to log blast holes as well as for use in in-fill drilling programs. Future refinement of the system may lead to the development of GPS controlled excavators for mining ore.
Resumo:
During the Middle Jurassic, the regional environment of Curio Bay, southeast South Island, New Zealand, was a fluvial plain marginal to volcanic uplands. Intermittent flashy, poorly-confined flood events buried successive conifer forests. With the termination of each flood, soils developed and vegetation was reestablished. In most cases, this developed into coniferous forest. In approximately 40 m of vertical section, 10 fossil forest horizons can be distinguished, highlighting a type of fluvial architecture which is poorly documented. Flood-basin material is minimal, but a short-Lived floodbasin lake is inferred to have developed within the interval of study. Paleocurrent indicators suggest enclosure of the basin on more than one side. Sedimentation style suggests a relatively dry (less than humid but not arid) climate with seasonal rainfall. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Geometry and structural control of gold vein mineralizations in the Serido Belt, northeastern Brazil
Resumo:
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.
Resumo:
Three Bahama-like carbonate plaforms-the Guilin, Yangshuo and Yanshan-occurred in Guilin and the surrounding regions during Middle and Late Devonian, which, at a broad scale, are part of an extensive carbonate platform (Xiangzhou carbonate platform) facies in South China. The intraplatform depression facies, a unique characteristic of the Chinese Devonian depositional sequence, separates Bahama-like (platform-to-depression) carbonate subplatfonns. Intraplatform depressions resulted from syndepositional faulting that cut the basement of carbonate subplatforms and affected further platform development. The Liangshuijing section, located between the Guilin platform in the north and the Yangshuo platform in the south, is representative of the fore-reef slope facies neighboring an intraplatform. depression. The South edge of the fore-reef slope lies adjacent to the Yangshuo reef carbonate platform, and the north edge graded into the Yangdi pelagic depression facies. A detailed sedimentary and microfacies analysis work done in this study at the Liangshuijing section shows a distinct vertical facies change from back-reef, restricted platform, hemipelagic, to fore-reefslope facies, differing from either shallow-water benthic facies or typical pelagic facies. Various benthic and pelagic lithofacies and their associations have been recognized in the Liangshuijing section, including dolomitic rudstone, gastropod wackestone, Amphipora floatstone, tentaculitoid wackestone, stromatolite and oncoid limestone, Amphipora grainstone, grain flows, laminated limestone, flat-pebble and brachiopod floatstone, and carbonate turbidites. Eight types of sedimentary cycles composed of two or three lithofacies have been distinguished, which are able to indicate environment changes. Stromatolites, oncoids, grain flows, carbonate turbidites, and tentaculitoid limestones characterize the slope and intraplatform depression lithofacies. Analysis of the vertical sedimentary cycles in the Liangshuijinag section and the lateral stratigraphic equivalents suggest the differing facies patterns occurred at the middle Varcus Zone (Givetian) of Middle Devonian, coeval with the development of fore-reef slope facies in the Guilin area in response to syndeposifional faulting.
Resumo:
The mid-crustal Alpine Schist in central Southern Alps, New Zealand has been exhumed during the past similar to3 m.y. on the hanging wall of the oblique-slip Alpine Fault. These rocks underwent ductile deformation during their passage through the similar to 150-km-wide Pacific-Australia plate boundary zone. Likely to be Cretaceous in age, peak metamorphism predates the largely Pliocene and younger oblique convergence that continues to uplift the Southern Alps today. Late Cenozoic ductile deformation constructively reinforced a pre-existing fabric that was well oriented to accommodate a dextral-transpressive overprint. Quartz microstructures below a recently exhumed brittle-ductile transition zone reflect a late Cenozoic increment of ductile strain that was distributed across deeper levels of the Pacific Plate. Deformation was transpressive, including a dextral-normal shear component that bends and rotates a delaminated panel of Pacific Plate crust onto the oblique footwall ramp of the Alpine Fault. Progressive ductile shear in mylonites at the base of the Pacific Plate overprints earlier fabrics in a dextral-reverse sense, a deformation that accompanies translation of the schists up the Alpine Fault. Ductile shear along that structure affects not only the 12-km-thick section of Alpine mylonites, but is distributed across several kilometres of overlying nonmylonitic rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.
Resumo:
Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.
Resumo:
Blast fragmentation can have a significant impact on the profitability of a mine. An optimum run of mine (ROM) size distribution is required to maximise the performance of downstream processes. If this fragmentation size distribution can be modelled and controlled, the operation will have made a significant advancement towards improving its performance. Blast fragmentation modelling is an important step in Mine to Mill™ optimisation. It allows the estimation of blast fragmentation distributions for a number of different rock mass, blast geometry, and explosive parameters. These distributions can then be modelled in downstream mining and milling processes to determine the optimum blast design. When a blast hole is detonated rock breakage occurs in two different stress regions - compressive and tensile. In the-first region, compressive stress waves form a 'crushed zone' directly adjacent to the blast hole. The second region, termed the 'cracked zone', occurs outside the crush one. The widely used Kuz-Ram model does not recognise these two blast regions. In the Kuz-Ram model the mean fragment size from the blast is approximated and is then used to estimate the remaining size distribution. Experience has shown that this model predicts the coarse end reasonably accurately, but it can significantly underestimate the amount of fines generated. As part of the Australian Mineral Industries Research Association (AMIRA) P483A Mine to Mill™ project, the Two-Component Model (TCM) and Crush Zone Model (CZM), developed by the Julius Kruttschnitt Mineral Research Centre (JKMRC), were compared and evaluated to measured ROM fragmentation distributions. An important criteria for this comparison was the variation of model results from measured ROM in the-fine to intermediate section (1-100 mm) of the fragmentation curve. This region of the distribution is important for Mine to Mill™ optimisation. The comparison of modelled and Split ROM fragmentation distributions has been conducted in harder ores (UCS greater than 80 MPa). Further work involves modelling softer ores. The comparisons will be continued with future site surveys to increase confidence in the comparison of the CZM and TCM to Split results. Stochastic fragmentation modelling will then be conducted to take into account variation of input parameters. A window of possible fragmentation distributions can be compared to those obtained by Split . Following this work, an improved fragmentation model will be developed in response to these findings.