928 resultados para Sub-cell formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cell types have no known functional attributes. In the bladder and prostate, basal epithelial and stromal cells appear similar in cytomorphology and share several cell surface markers. Their total gene expression (transcriptome) should provide a clear measure of the extent to which they are alike functionally. Since urologic stromal cells are known to mediate organ-specific tissue formation, these cells in cancers might exhibit aberrant gene expression affecting their function. For transcriptomes, cluster designation (CD) antigens have been identified for cell sorting. The sorted cell populations can be analyzed by DNA microarrays. Various bladder cell types have unique complements of CD molecules. CD9(+) urothelial, CD104(+) basal and CD13(+) stromal cells of the lamina propria were therefore analyzed, as were CD9(+) cancer and CD13(+) cancer-associated stromal cells. The transcriptome datasets were compared by principal components analysis for relatedness between cell types; those with similarity in gene expression indicated similar function. Although bladder and prostate basal cells shared CD markers such as CD104, CD44 and CD49f, they differed in overall gene expression. Basal cells also lacked stem cell gene expression. The bladder luminal and stromal transcriptomes were distinct from their prostate counterparts. In bladder cancer, not only the urothelial but also the stromal cells showed gene expression alteration. The cancer process in both might thus involve defective stromal signaling. These cell-type transcriptomes provide a means to monitor in vitro models in which various CD-isolated cell types can be combined to study bladder differentiation and bladder tumor development based on cell-cell interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central giant cell lesions are benign intraosseous proliferative lesions that have considerable local aggressiveness. Nonsurgical treatment methods, such as intralesional corticosteroid injections, systemic calcitonin and interferon have been reported. Recently, bisphosphonates have been used to treat central giant cell lesions. A case of a 36-year-old male with a central giant cell lesion crossing the mandibular midline was treated with intralesional corticosteroids combined with alendronate sodium for the control of systemic bone resorption. The steroid injections and the use of bisphosphonates were stopped after seven months when further needle penetration into the lesion was not possible due to new bone formation. After two years, the bony architecture was near normal, and only minimal radiolucency was present around the root apices of the involved teeth. The patient was followed up for four years, and panoramic radiography showed areas of new bone formation. Thus far, neither recurrence nor side effects of the medication have been detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pretreatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the electrochemical reduction of the azo dye Sudan III in methanol/0.01 mol l(-1) Bu4NBF4 at applied potential of -1.2V, which promotes 98% discoloration of the commercial sample. The reduction products were analyzed by high performance liquid chromatography, after optimized conditions for 20 aromatic amines with carcinogenic potentiality. The harmful compounds such as: aniline, benzidine, o-toluidine, 2,6-dimethylaniline, 4,4'-oxydianiline, 4,4'-metileno-bis-2-methylaniline and 4-aminobiphenyl are formed after azo bond cleavage. The electrochemical reduction is compared with chemical reduction by using sodium thiosulfate. Our findings illustrates that commercial Sudan III under reductive condition can forms a number of products, which some are known active genotoxins. The technique could be used to mimic important redox reactions in human metabolism or environment, highlighting the possible formation of by-products more toxic than the original dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The city of Sao Paulo is located in a subtropical region whose climate exhibits few defined seasons as well as frequent oscillations in temperature and rainfall throughout the year. In addition to interfering with physiological processes, these peculiar climatic dynamics influence the formation of O-3 and its influx into leaves, causing species used as bioindicators in temperate climates to be ineffective here. This study evaluated gas exchange variations in CO2 and H2O and leaf injuries induced by O-3 in Nicotiana tabacum Bel-W3 in relation to oscillations in environmental conditions. Plants were exposed to an O-3-polluted environment for fifteen periods of fourteen days each throughout 2008. Gas exchange and O-3 were higher during the summer and winter but were highly variable in all seasons. Severe injuries occurred during the winter and spring, with significant variation in this parameter being observed throughout the year. An analysis of biotic and abiotic variables revealed complex relationships among them, with great importance of meteorological factors in plant responses. We conclude that under unstable climatic conditions, the relationship between O-3 flux and injury is weak, and the qualitative character of biomonitoring is further confirmed. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.