945 resultados para Structure elucidation of ruthenium complex
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The parasite Schistosoma mansoni lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. Schistosomiasis is endemic in 76 countries and territories and amongst the parasitic diseases ranks second after malaria in terms of social and economic impact and public health importance. The PNP is an attractive target for drug design and it has been submitted to extensive structure-based design. The atomic coordinates of the complex of human PNP with inosine were used as template for starting the modeling of PNP from S. mansoni complexed with inosine. Here we describe the model for the complex SmPNP-inosine and correlate the structure with differences in the affinity for inosine presented by human and S. mansoni PNPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid (shikimate) has been determined at 2.3 Angstrom resolution, clearly revealing the amino acid residues involved in shikimate binding. In MtSK, the Glu61 strictly conserved in SK forms a hydrogen bond and salt-bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81, and Arg136, and hydroxyl groups with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for elucidation of the mechanism of SK-catalyzed reaction and for the development of a new generation of drugs against tuberculosis. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mario Sergio Palma, Yasuhiro Itagaki, Tsuyoshi Fujita, Hideo Naoki and Terumi Nakajima. Structural characterization of a new acylpolpaminetoxin from the venom of Brazilian garden spider Nephilengys: cruentata. Toxicon 36, 455-493, 1998.-The use of mass spectrometry, in which high-energy CID and charge remote fragmentation both of protonated and sodium-attached molecular ions was applied, afforded the structural elucidation of a new acylgolyaminetoxin with M-W= 801 da from the venom of the Brazilian garden spider Nephilengys cruentata. In spite of having the same M-W of the NPTX-2, previously described in the venom of the Joro spider Nephila clavata, neither toxins are isomers. In order to differentiate them by using the most usual nomenclature, the new toxin was named NPTX-801C and the NPTX-2 was renamed to NPTX-801E. Both toxins have as common structure the 4-hydroxyindole-3-acetyl-asparaginyl-cadaveryl moiety in their molecules and their structure may be represented in a simplified way: NPTX-801E is HO-indole-Asn-Cad-Pta-Orn-Arg and NPTX-801C is HO-indole-Asn-Cad-Gly-Put-Pta-Pta. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation. This work reports on the crystallographic study of the complex of human PNP-immucillin-H (HsPNP-ImmH) solved at 2.6 Angstrom resolution using synchrotron radiation. Immucillin-H (ImmH) inhibits the growth of malignant T-cell lines in the presence of deoxyguanosine without affecting non-T-cell tumor lines. ImmH inhibits activated normal human T cells after antigenic stimulation in vitro. These biological effects of ImmH suggest that this agent may have utility in the treatment of certain human diseases characterized by abnormal T-cell growth or activation. This is the first structural report of human PNP complexed with immucillin-H. The comparison of the complex HsPNP-ImmH with recent crystallographic structures of human PNP explains the high specificity of immucillin-H for human PNP. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Knowledge of structural and physiological differences among the prostatic lobes (PL) is the basis for development of experimental studies in traditional laboratory rodents. Although Mongolian gerbil reproductive organs have been increasingly investigated, its prostate structure is far from being properly known, and investigations of this organ focused on the ventral lobe (VL). Thus, the present study provides a thorough morphological description of prostatic complex in the male adult gerbil on the basis of topographic, histological, and ultrastructural analysis and ductal branching. Like other rodents, four pairs of PL were observed. However, in contrast to the rat and mouse, the VL is the least voluminous component and the dorsolateral lobe (DLL) is the most prominent and spatially isolated from remaining PL. The occurrence of a dorsal lobe (DL), hidden between bladder and insertion of seminal vesicles, has not been mentioned in previous reports with Mongolian gerbil. Collagenase digestion followed by microdissection revealed that, except for DL, which has a tubularacinar organization, all PL exhibit tubular organization and variable ductal branching. Distinct histological and ultrastructural features such as secretory epithelium, aspect of luminal secretion and stromal organization are reported for each PL and are confirmed by morphometric and stereological methods. Histological sections showed at least three intralobar segments in VL and DL. Ultrastructural analysis evidenced that, although luminal epithelial cells of PL share typical features of exocrine secretory cells, there are striking lobe phenotypical variations. Both merocrine and apocrine pathways are observed in variable rates in all PL, with the predominance of the former in the DLL and the latter in the CG. The morphological observations presented herein point to distinct structural identities for each PL, which probably reflects,specific functional compromise of seminal fluid secretion. These data also point to the gerbil as a good model for investigations concerning the regulation of prostate development and homeostasis, mainly with regard to the dorsal and dorsolateral PL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SMase I, a 32 kDa sphingomyelinase found in Loxosceles laeta venom, is responsible for the major pathological effects of spider envenomation. This toxin has been cloned and functionally expressed as a fusion protein containing a 6 x His tag at its N-terminus to yield a 33 kDa protein [Fernandes-Pedrosa et al. (2002), Biochem. Biophys. Res. Commun. 298, 638 - 645]. The recombinant protein possesses all the biological properties ascribed to the whole L. laeta venom, including dermonecrotic and complement-dependent haemolytic activities. Dynamic light-scattering experiments conducted at 291 K demonstrate that the sample possesses a monomodal distribution, with a hydrodynamic radius of 3.57 nm. L. laeta SMase I was crystallized by the hanging-drop vapour-diffusion technique using the sparse-matrix method. Single crystals were obtained using a buffer solution consisting of 0.08 M HEPES and 0.9 M trisodium citrate, which was titrated to pH 7.5 using 0.25 M sodium hydroxide. Complete three-dimensional diffraction data were collected to 1.8 Angstrom at the Laboratorio Nacional de Luz Sincrotron (LNLS, Campinas, Brazil). The crystals belong to the hexagonal system ( space group P6(1) or P6(5)), with unit-cell parameters a = b = 140.6, c = 113.6 Angstrom. A search for heavy-atom derivatives has been initiated and elucidation of the crystal structure is currently in progress.
Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug surarnin
Resumo:
Suramin, a synthetic polysulfonated compound, developed initially for the treatment of African trypanosomiasis and onchocerciasis, is currently used for the treatment of several medically relevant disorders. Suramin, heparin, and other polyanions inhibit the myotoxic activity of Lys49 phospholipase A(2) analogues both in vitro and in vivo, and are thus of potential importance as therapeutic agents in the treatment of viperid snake bites. Due to its conformational flexibility around the single bonds that link the central phenyl rings to the secondary amide backbone, the symmetrical suramin molecule binds by an induced-fit mechanism complementing the hydrophobic surfaces of the dimer and adopts a novel conformation that lacks C2 symmetry in the dimeric crystal structure of the suramin-Bothrops asper myotoxin II complex. The simultaneous binding of suramin at the surfaces of the two monomers partially restricts access to the nominal active sites and significantly changes the overall charge of the interfacial recognition face of the protein, resulting in the inhibition of myotoxicity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Lotus tetragonolobus lectin (LTA) is a fucose-specific legume lectin. Although several studies report a diverse combination of biological activities for LTA, little is known about the mechanisms involved in L-fucosyl oligosaccharide recognition. The crystal structure of LTA at 2.0 angstrom resolution reveals a different legume lectin tetramer. Its structure consists of a homotetramer composed of two back-to-back GS4-like dimers arranged in a new mode, resulting in a novel tetramer. The LTA N-linked carbohydrate at Asn4 and the unusual LTA dimer-dimer interaction are related to its particular mode of tetramerization. In addition, we used small angle X-ray scattering to investigate the quaternary structure of LTA in solution and to compare it to the crystalline structure. Although the crystal structure of LTA has revealed a conserved metal-binding site, its L-fucose-binding site presents some punctual differences. Our investigation of the new tetramer of LTA and its fucose-binding site is essential for further studies related to cross-linking between LTA and complex divalent L-fucosyl carbohydrates. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anatase nanoparticles were obtained through a modified sol-gel route from titanium isopropoxide modified with acetic acid in order to control hydrolysis and condensation reactions. The modification of Ti(O(i)Pr)(4) with acetic acid reduces the availability of groups that hydrolyze and condense easily through the formation of a stable complex whose structure was determined to be Ti(OCOCH(3))(O(i)Pr)(2) by means of FTIR and (13)C NMR. The presence of this complex was confirmed with FTIR in the early stages of the process. A doublet in 1542 and 1440 cm(-1) stands for the asymmetric and symmetric stretching vibrations of the carboxylic group coordinated to Ti as a bidentate ligand. The gap of 102 cm(-1) between these signals suggests that acetate acts preferentially as a bidentate rather than as a bridging ligand between two titanium atoms. The use of acetic acid as modifier allows the control of both the degree of condensation and oligomerization of the precursor and leads to the preferential crystallization of TiO(2) in the anatase phase. A possible reaction pathway toward the formation of anatase is proposed on the basis of the intermediate species present in a 1:1 Ti(O(i)Pr)(4):CH(3)COOH molar system in which esterification reactions that introduce H(2)O into the reaction mixture were seen to be negligible. The Rietveld refinement and TEM analysis revealed that the powder is composed of isotropic anatase nanocrystallites.