793 resultados para Stop-loss transform
Resumo:
Policy-makers are creating mechanisms to help developing countries cope with loss and damage from climate change, but the negotiations are largely neglecting scientific questions about what the impacts of climate change actually are. Mitigation efforts have failed to prevent the continued increase of anthropogenic greenhouse gas (GHG) emissions. Adaptation is now unlikely to be sufficient to prevent negative impacts from current and future climate change1. In this context, vulnerable nations argue that existing frameworks to promote mitigation and adaptation are inadequate, and have called for a third international mechanism to deal with residual climate change impacts, or “loss and damage”2. In 2013, the United Nations Framework Convention on Climate Change (UNFCCC) responded to these calls and established the Warsaw International Mechanism (WIM) to address loss and damage from the impacts of climate change in developing countries3. An interim Executive Committee of party representatives has been set up, and is currently drafting a two-year workplan comprising meetings, reports, and expert groups; and aiming to enhance knowledge and understanding of loss and damage, strengthen dialogue among stakeholders, and promote enhanced action and support. Issues identified as priorities for the WIM thus far include: how to deal with non-economic losses, such as loss of life, livelihood, and cultural heritage; and linkages between loss and damage and patterns of migration and displacement2. In all this, one fundamental issue still demands our attention: which losses and damages are relevant to the WIM? What counts as loss and damage from climate change?
Resumo:
For certain observing types, such as those that are remotely sensed, the observation errors are correlated and these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages of background and analysis innovations to provide an estimate of the observation error covariance matrix. To evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial observation error covariances where the length scale of the true covariance changes slowly in time can also be captured. We find that using the estimated correlated observation error in the assimilation improves the analysis.
Resumo:
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series for Germany are quantified based on potential losses using empirical models. Two reanalysis data sets and observations from German weather stations are considered for 30 winters. Histograms of events exceeding selected return levels (1-, 2- and 5-year) are derived. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Over 4000 years of general circulation model (GCM) simulations forced with current climate conditions are analysed to provide a better assessment of historical return periods. Estimations differ between distributions, for example 40 to 65 years for the 1990 series. For such less frequent series, estimates obtained with the Poisson distribution clearly deviate from empirical data. The negative binomial distribution provides better estimates, even though a sensitivity to return level and data set is identified. The consideration of GCM data permits a strong reduction of uncertainties. The present results support the importance of considering explicitly clustering of losses for an adequate risk assessment for economical applications.
Resumo:
Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed.
Resumo:
Since 2007 a large decline in Arctic sea ice has been observed. The large-scale atmospheric circulation response to this decline is investigated in ERA-Interim reanalyses and HadGEM3 climate model experiments. In winter, post-2007 observed circulation anomalies over the Arctic, North Atlantic and Eurasia are small compared to interannual variability. In summer, the post-2007 observed circulation is dominated by an anticyclonic anomaly over Greenland which has a large signal-to-noise ratio. Climate model experiments driven by observed SST and sea ice anomalies are able to capture the summertime pattern of observed circulation anomalies, although the magnitude is a third of that observed. The experiments suggest high SSTs and reduced sea ice in the Labrador Sea lead to positive temperature anomalies in the lower troposphere which weaken the westerlies over North America through thermal wind balance. The experiments also capture cyclonic anomalies over Northwest Europe, which are consistent with downstream Rossby wave propagation
Resumo:
We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.
Resumo:
Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.
Resumo:
The United Nations Framework Convention on Climate Change (UNFCCC) has established the Warsaw International Mechanism (WIM) to deal with loss and damage associated with climate change impacts, including extreme events, in developing countries. It is not yet known whether events will need to be attributed to anthropogenic climate change to be considered under the WIM. Attribution is possible for some extreme events- a climate model assessment can estimate how greenhouse gas emissions have affected the likelihood of their occurrence. Dialogue between scientists and stakeholders is required to establish whether, and how, this science could play a role in the WIM.
Resumo:
Presents an interview with Elizabeth Nunez, author and professor. Nunez discusses the issues on migration, family, and intimacy which are the topics of her novel "Anna In-Between." She explains the demands of the publishing industry that cast a shadow in the world of the novel and the real world of Caribbean writers. This interview was translated by Maria Lusia Ruiz.
Resumo:
People are often exposed to more information than they can actually remember. Despite this frequent form of information overload, little is known about how much information people choose to remember. Using a novel “stop” paradigm, the current research examined whether and how people choose to stop receiving new—possibly overwhelming—information with the intent to maximize memory performance. Participants were presented with a long list of items and were rewarded for the number of correctly remembered words in a following free recall test. Critically, participants in a stop condition were provided with the option to stop the presentation of the remaining words at any time during the list, whereas participants in a control condition were presented with all items. Across five experiments, we found that participants tended to stop the presentation of the items to maximize the number of recalled items, but this decision ironically led to decreased memory performance relative to the control group. This pattern was consistent even after controlling for possible confounding factors (e.g., task demands). The results indicated a general, false belief that we can remember a larger number of items if we restrict the quantity of learning materials. These findings suggest people have an incomplete understanding of how we remember excessive amounts of information.
Resumo:
HSPC300 is essential for most SCAR complex functions. The phenotype of HSPC300 knockouts is most similar to mutants in scar, not the other members of the SCAR complex, suggesting that HSPC300 acts most directly on SCAR itself.
Resumo:
This paper investigates the effect of accountability-the expectation on the side of the decision maker of having to justify his/her decisions to somebody else-on loss aversion. Loss aversion is commonly thought to be the strongest component of risk aversion. Accountability is found to reduce the bias of loss aversion. This effect is explained by the higher cognitive effort induced by accountability, which triggers a rational check on emotional reactions at the base of loss aversion, leading to a reduction of the latter. Connections to dual-processing models are discussed.
Resumo:
Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30°C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18 to 26°C) and extreme stress (34°C), but was 53% following intermediate heat stress at 30°C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.
Resumo:
We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1° of freedom per altitude level). We take partial columns between roughly 5 and 30 km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10 km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ± 3 × 1022 molecules cm−2. Expressed as median ± median absolute deviation (expressed in absolute or relative terms), these differences are 0.11 ± 9.60 × 10^20 molecules cm−2 (0.012 ± 1.018 %) for TANSO-FTS–PEARL-FTS, −2.6 ± 2.6 × 10^21 molecules cm−2 (−1.6 ± 1.6 %) for ACE-FTS–PEARL-FTS, and 7.4 ± 6.0 × 10^20 molecules cm−2 (0.78 ± 0.64 %) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.