855 resultados para Statistics|Electrical engineering|Computer science
Resumo:
Dissertation presented to obtain the PhD degree in Electrical and Computer Engineering - Electronics
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Este documento foi redigido no âmbito da dissertação do Mestrado em Engenharia Informática na área de Arquiteturas, Sistemas e Redes, do Departamento de Engenharia Informática, do ISEP, cujo tema é diagnóstico cardíaco a partir de dados acústicos e clínicos. O objetivo deste trabalho é produzir um método que permita diagnosticar automaticamente patologias cardíacas utilizando técnicas de classificação de data mining. Foram utilizados dois tipos de dados: sons cardíacos gravados em ambiente hospitalar e dados clínicos. Numa primeira fase, exploraram-se os sons cardíacos usando uma abordagem baseada em motifs. Numa segunda fase, utilizamos os dados clínicos anotados dos pacientes. Numa terceira fase, avaliamos a combinação das duas abordagens. Na avaliação experimental os modelos baseados em motifs obtiveram melhores resultados do que os construídos a partir dos dados clínicos. A combinação das abordagens mostrou poder ser vantajosa em situações pontuais.
Resumo:
Dissertation to obtain the degree of Master in Electrical and Computer Engineering
Resumo:
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering of the Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Electrical and Computer Engineering(Industrial Information Systems)
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
This thesis introduces a novel conceptual framework to support the creation of knowledge representations based on enriched Semantic Vectors, using the classical vector space model approach extended with ontological support. One of the primary research challenges addressed here relates to the process of formalization and representation of document contents, where most existing approaches are limited and only take into account the explicit, word-based information in the document. This research explores how traditional knowledge representations can be enriched through incorporation of implicit information derived from the complex relationships (semantic associations) modelled by domain ontologies with the addition of information presented in documents. The relevant achievements pursued by this thesis are the following: (i) conceptualization of a model that enables the semantic enrichment of knowledge sources supported by domain experts; (ii) development of a method for extending the traditional vector space, using domain ontologies; (iii) development of a method to support ontology learning, based on the discovery of new ontological relations expressed in non-structured information sources; (iv) development of a process to evaluate the semantic enrichment; (v) implementation of a proof-of-concept, named SENSE (Semantic Enrichment kNowledge SourcEs), which enables to validate the ideas established under the scope of this thesis; (vi) publication of several scientific articles and the support to 4 master dissertations carried out by the department of Electrical and Computer Engineering from FCT/UNL. It is worth mentioning that the work developed under the semantic referential covered by this thesis has reused relevant achievements within the scope of research European projects, in order to address approaches which are considered scientifically sound and coherent and avoid “reinventing the wheel”.
Resumo:
Based on the report for the unit “Sociology of New Information Technologies” of the Master on Computer Sciences at FCT/University Nova Lisbon in 2015-16. The responsible of this curricular unit is Prof. António Moniz
Resumo:
This article presents a work performed in the maintenance department of a furniture company in Portugal, in order to develop and implement autonomous maintenance. The main objective of the project was related to the objective to increase and make effective the autonomous maintenance tasks performed by production operators, and in this way avoiding unplanned downtime due to equipment failures. Although some autonomous maintenance tasks were already carried out within the company, a preliminary study revealed weaknesses in the application of this tool. In the initial phase of this pilot project, the main problems encountered at the level of autonomous maintenance were related to the lack of time to carry out these tasks, showing that the stipulated procedures were far from the real needs of the company. To solve these problems a pilot project was conducted, making several changes in the performance of autonomous maintenance tasks, making them standard and adapted to reality of each production line. There was a general improvement in the factory indicators, and essentially there was a behavioral change, since the operators felt that their opinions were taking into account and began to understand the importance of small tasks performed by them.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
Companies from the motorcycles components branch are dealing with a dynamic environment, resulting from the introduction of new products and the increase of market demand. This dynamic environment requires frequent changes in production lines and requires flexibility in the processes, which can cause reductions in the level of quality and productivity. This paper presents a Lean Six Sigma improvement project performed in a production line of the company's machining sector, in order to eliminate losses that cause low productivity, affecting the fulfillment of the production plan and customer satisfaction. The use of Lean methodology following the DMAIC stages allowed analyzing the factors that influence the line productivity loss. The major problems and causes that contribute to a reduction on productivity and that were identified in this study are the lack of standardization in the setup activities and the excessive stoppages for adjustment of the processes that caused an increase of defects. Control charts, Pareto analysis and cause-and-effect diagrams were used to analyze the problem. On the improvement stage, the changes were based on the reconfiguration of the line layout as well as the modernization of the process. Overall, the project justified an investment in new equipment, the defective product units were reduced by 84% and an increase of 29% of line capacity was noticed.
Resumo:
In this work, we present a 3D web-based interactive tool for numerical modeling and simulation approach to breast reduction surgery simulation, to assist surgeons in planning all aspects related to breast reduction surgery before the actual procedure takes place, thereby avoiding unnecessary risks. In particular, it allows the modeling of the initial breast geometry, the definition of all aspects related to the surgery and the visualization of the post-surgery breast shape in a realistic environment.
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
The research described in this thesis was developed as part o f the Information Management for Green Design (IMA GREE) Project. The 1MAGREE Project was founded by Enterprise Ireland under a Strategic Research Grant Scheme as a partnership project between Galway Mayo Institute o f Technology and C1MRU University College Galway. The project aimed to develop a CAD integrated software tool to support environmental information management for design, particularly for the electronics-manufacturing sector in Ireland.