965 resultados para Special operations (Military science)
Resumo:
The sugar industry is pursuing diversification options using bagasse as a feedstock. Depithing, the removal of the smaller bagasse particles, is an integral part of the manufacturing processes for bagasse by-products such as pulp and paper. There are possible environmental and economic benefits associated with incorporating depithing operations into a sugar factory. However there have only been limited investigations into the effects of depithing operations on a sugar factory boiler station. This paper describes a modelling investigation, using the lumped parameter boiler design tool BOILER and the CFD code FURNACE, to predict the effects of pith, depithed bagasse and mixed bagasse/pith firing on the efficiency, fuel consumption and combustion performance of a typical sugar factory boiler.
Resumo:
Infrastructure forms a vital component in supporting today’s way of life and has a significant role or impact on economic, environmental and social outcomes of the region around it. The design, construction and operation of such assets are a multi-billion dollar industry in Australia alone. Another issue that will play a major role in our way life is that of climate change and the greater concept of sustainability. With limited resources and a changing natural world it is necessary for infrastructure to be developed and maintained in a manner that is sustainable. In order to achieve infrastructure sustainability in operations it is necessary for there to be: a sustainability assessment scheme that provides a scientifically sound and realistic approach to measuring an assets level of sustainability; and, systems and tools to support the making of decisions that result in sustainable outcomes by providing feedback in a timely manner. Having these in place will then help drive the consideration of sustainability during the decision making process for infrastructure operations and maintenance. In this paper we provide two main contributions; a comparison and review of sustainability assessment schemes for infrastructure and their suitability for use in the operations phase; and, a review of decision support systems/tools in the area of infrastructure sustainability in operations. For this paper, sustainability covers not just the environment, but also finance/economic and societal/community aspects as well. This is often referred to as the Triple Bottom Line and forms one of the three dimensions of corporate sustainability [Stapledon, 2004].
Resumo:
The management and improvement of business processes are a core topic of the information systems discipline. The persistent demand in corporations within all industry sectors for increased operational efficiency and innovation, an emerging set of established and evaluated methods, tools, and techniques as well as the quickly growing body of academic and professional knowledge are indicative for the standing that Business Process Management (BPM) has nowadays. During the last decades, intensive research has been conducted with respect to the design, implementation, execution, and monitoring of business processes. Comparatively low attention, however, has been paid to questions related to organizational issues such as the adoption, usage, implications, and overall success of BPM approaches, technologies, and initiatives. This research gap motivated us to edit a corresponding special focus issue for the journal BISE/WIRTSCHAFTSINFORMATIK. We are happy that we are able to present a selection of three research papers and a state-of-the-art paper in the scientific section of the issue at hand. As these papers differ in the topics they investigate, the research method they apply, and the theoretical foundations they build on, the diversity within the BPM field becomes evident. The academic papers are complemented by an interview with Phil Gilbert, IBM’s Vice President for Business Process and Decision Management, who reflects on the relationship between business processes and the data flowing through them, the need to establish a process context for decision making, and the calibration of BPM efforts toward executives who see processes as a means to an end, rather than a first-order concept in its own right.
Resumo:
Crowds of noncombatants play a large and increasingly recognized role in modern military operations and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem, the authors are developing a crowd simulation capable of generating crowds of noncombatant civilians that exhibit a variety of realistic individual and group behaviors at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard, distributed simulation architecture. Commercial game technology is used in the crowd simulation to model both urban terrain and the physical behaviors of the human characters that make up the crowd. The objective of this article is to present the design and development process of a simulation that integrates commercially available game technology with current military simulations to generate realistic and believable crowd behavior.
Resumo:
Crowds of non-combatants play a large and increasingly recognized role in modern military operations, and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem we are developing a crowd simulation capable of generating crowds of non-combatant civilians that exhibit a variety of realistic individual and group behaviours at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard distributed simulation architecture. Commercial game technology is utilized in the crowd simulation to model both urban terrain and the physical behaviours of the human characters that make up the crowd. The objective of this paper is to present the process involved with the design and development of a simulation that integrates commercially available game technology with current military simulations in order to generate realistic and believable crowd behaviour.
Resumo:
Learning capability (LC) is a special dynamic capability that a firm purposefully builds to develop a cognitive focus, so as to enable the configuration and improvement of other capabilities (both dynamic and operational) to create and respond to market changes. Empirical evidence regarding the essential role of LC in leveraging operational manufacturing capabilities is, however, limited in the literature. This study takes a routine-based approach to understand capability, and focuses on demonstrating leveraging power of LC upon two essential operational capabilities within the manufacturing context, i.e., operational new product development capability (ONPDC), and operational supplier integration capability (OSIC). A mixed-methods research framework was used, which combines sources of evidence derived from a survey study and a multiple case study. This study identified high-level routines of LC that can be designed and controlled by managers and practitioners, to reconfigure underlying routines of ONPDC and OSIC to achieve superior performance in a turbulent environment. Hence, the study advances the notion of knowledge-based dynamic capabilities, such as LC, as routine bundles. It also provides an impetus for managing manufacturing operations from a capability-based perspective in the fast changing knowledge era.
Resumo:
Mobile/tower cranes are the most essential forms of construction plant in use in the construction industry but are also the subject of several safety issues. Of these, blind lifting has been found to be one of the most hazardous of crane operations. To improve the situation, a real-time monitoring system that integrates the use of a Global Positioning System (GPS) and Radio Frequency Identification (RFID) is developed. This system aims to identify unauthorized work or entrance of personnel within a pre-defined risk zone by obtaining positioning data of both site workers and the crane. The system alerts to the presence of unauthorized workers within a risk zone——currently defined as 3m from the crane. When this happens, the system suspends the power of the crane and a warning signal is generated to the safety management team. In this way the system assists the safety management team to manage the safety of hundreds of workers simultaneously. An onsite trial with debriefing interviews is presented to illustrate and validate the system in use.
Resumo:
Constructing train schedules is vital in railways. This complex and time consuming task is however made more difficult by additional requirements to make train schedules robust to delays and other disruptions. For a timetable to be regarded as robust, it should be insensitive to delays of a specified level and its performance with respect to a given metric, should be within given tolerances. In other words the effect of delays should be identifiable and should be shown to be minimal. To this end, a sensitivity analysis is proposed that identifies affected operations. More specifically a sensitivity analysis for determining what operation delays cause each operation to be affected is proposed. The information provided by this analysis gives another measure of timetable robustness and also provides control information that can be used when delays occur in practice. Several algorithms are proposed to identify this information and they utilise a disjunctive graph model of train operations. Upon completion the sets of affected operations can also be used to define the impact of all delays without further disjunctive graph evaluations.
Resumo:
FTIR spectra are reported of methanol adsorbed at 295 K on ZnO/SiO 2, on reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methanol on ZnO/SiO2 gave methoxy species on ZnO and SiO, in addition to both strongly and weakly physisorbed methanol on SiO2. The corresponding adsorption of methanol on reduced Cu/ZnO/SiO2 also gave methoxy species on Cu and a small amount of bridging formate. Reaction of methanol with a reoxidised Cu/ZnO/SiO2 catalyst resulted in an enhanced quantity of methoxy species on Cu. Heating adsorbed species on Cu/ZnO/SiO2 at 393 K led to the loss of methoxy groups on Cu and the concomitant formation of formate species on both ZnO and Cu. The comparable reaction on a reoxidised Cu/ZnO/SiO2 catalyst gave an increased amount of formate species on ZnO and this correlated with an increased quantity of methoxy groups lost from Cu. An explanation is given in terms of adsorption of formate and formaldehyde species at special sites located at the copper/zinc oxide interface.
Resumo:
Fourier-transform infrared (FTIR) spectra are reported of formic acid and formaldehyde on ZnO/SiO2, reduced Cu/ZnO/SiO2 and reoxidised Cu/ZnO/SiO2 catalyst. Formic acid adsorption on ZnO/SiO2 produced mainly bidentate zinc formate species with a lesser quantity of unidentate zinc formate. Formic acid on reduced Cu/ZnO/SiO2 catalyst resulted not only in the formation of bridging copper formate structures but also in an enhanced amount of formate relative to that for ZnO/SiO2 catalyst. Formic acid on reoxidised Cu/ZnO/SiO2 gave unidentate formate species on copper in addition to zinc formate moieties. The interaction of formaldehyde with ZnO/SiO2 catalyst resulted in the formation of zinc formate species. The same reaction on reduced Cu/ZnO/SiO2 catalyst gave bridging formate on copper and a remarkable increase in the quantity of formate species associated with the zinc oxide. Adsorption of formaldehyde on a reoxidised Cu/ZnO/SiO2 catalyst produced bridging copper formate and again an apparent increase in the concentration of zinc formate species. An explanation in terms of the adsorption of molecules at special sites located at the interface between copper and zinc oxide is given.
Resumo:
FTIR spectra are reported of methyl formate adsorbed at 295 K on ZnO/SiO2, reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methyl formate on ZnO/SiO2 gave adsorbed zinc formate species and strongly physisorbed molecular methanol on silica. The comparable reaction of methyl formate with reduced Cu/ZnO/SiO2 catalyst produced bridging formate species on copper and a diminished quantity of zinc formate relative to that formed on ZnO/SiO2 catalyst. This effect is explained in terms of site blockage on the ZnO surface by small copper clusters. Addition of methyl formate to a reoxidised Cu/ZnO/SiO2 catalyst produced a considerably greater amount of formate species on zinc oxide and methoxy groups on copper were detected. The increase in concentration of zinc formate species was rationalised in terms of rearrangement of unidentate copper formate species to become bonded to copper and zinc oxide sites located at the interface between these two components.
Resumo:
This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.
Resumo:
This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.
Resumo:
The Vehicle-to-Grid (V2G) concept is based on the newly developed and marketed technologies of hybrid petrol-electric vehicles, most notably represented by the Toyota Prius, in combination with significant structural changes to the world's energy economy, and the growing strain on electricity networks. The work described in this presentation focuses on the market and economic impacts of grid connected vehicles. We investigate price reduction effects and transmission system expansion cost reduction. We modelled a large numbers of plug-in-hybrid vehicle batteries by aggregating them into a virtual pumped-storage power station at the Australian national electricity market's (NEM) region level. The virtual power station concept models a centralised control for dispatching (operating) the aggregated electricity supply/demand capabilities of a large number of vehicles and their batteries. The actual level of output could be controlled by human or automated agents to either charge or discharge from/into the power grid. As previously mentioned the impacts of widespread deployments of this technology are likely to be economic, environmental and physical.