844 resultados para Sparse mixing matrix
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.
Resumo:
Sources and sinks of gravitational potential energy (GPE) play a rate-limiting role in the large scale ocean circulation. A key source is turbulent diapycnal mixing, whereby irre- versible mixing across isoneutral surfaces is enhanced by turbulent straining of these surfaces. This has motivated international observational efforts to map diapycnal mixing in the global ocean. However, in order to accurately relate the GPE supplied to the large scale circulation by diapycnal mixing to the mixing energy source, it is first necessary to determine the ratio, ξ , of the GPE generation rate to the available potential energy dissipation rate associated with turbulent mixing. Here, the link between GPE and hydro- static pressure is used to derive the GPE budget for a com- pressible ocean with a nonlinear equation of state. The role of diapycnal mixing is isolated and from this a global cli- matological distribution of ξ is calculated. It is shown that, for a given source of mixing energy, typically three times as much GPE is generated if the mixing takes place in bottom waters rather than in the pycnocline. This is due to GPE destruction by cabbelling in the pycnocline, as opposed to thermobaric enhancement of GPE generation by diapycnal mixing in the deep ocean.
Resumo:
The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe,Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1
Resumo:
We perform simulations of several convective events over the southern UK with the Met Office Unified Model (UM) at horizontal grid lengths ranging from 1.5 km to 200 m. Comparing the simulated storms on these days with the Met Office rainfall radar network allows us to apply a statistical approach to evaluate the properties and evolution of the simulated storms over a range of conditions. Here we present results comparing the storm morphology in the model and reality which show that the simulated storms become smaller as grid length decreases and that the grid length that fits the observations best changes with the size of the observed cells. We investigate the sensitivity of storm morphology in the model to the mixing length used in the subgrid turbulence scheme. As the subgrid mixing length is decreased, the number of small storms with high area-averaged rain rates increases. We show that by changing the mixing length we can produce a lower resolution simulation that produces similar morphologies to a higher resolution simulation.
Resumo:
This article reflects on the introduction of ‘matrix management’ arrangements for an Educational Psychology Service (EPS) within a Children’s Service Directorate of a Local Authority (LA). It seeks to demonstrate critical self-awareness, consider relevant literature with a view to bringing insights to processes and outcomes, and offers recommendations regarding the use of matrix management. The report arises from an East Midland’s LA initiative: ALICSE − Advanced Leadership in an Integrated Children’s Service Environment. Through a literature review and personal reflection, the authors consider the following: possible tensions within the development of matrix management arrangements; whether matrix management is a prerequisite within complex organizational systems; and whether competing professional cultures may contribute barriers to creating complementary and collegiate working. The authors briefly consider some research paradigms, notably ethnographic approaches, soft systems methodology, activity theory and appreciative inquiry. These provide an analytic framework for the project and inform this iterative process of collaborative inquiry. Whilst these models help illuminate otherwise hidden processes, none have been implemented following full research methodologies, reflecting the messy reality of local authority working within dynamic organizational structures and shrinking budgets. Nevertheless, this article offers an honest reflection of organizational change within a children’s services environment.
Resumo:
Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.
Resumo:
As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.
Resumo:
Mixing layer height (MLH) is one of the key parameters in describing lower tropospheric dynamics and capturing its diurnal variability is crucial, especially for interpreting surface observations. In this paper we introduce a method for identifying MLH below the minimum range of a scanning Doppler lidar when operated at vertical. The method we propose is based on velocity variance in low-elevation-angle conical scanning and is applied to measurements in two very different coastal environments: Limassol, Cyprus, during summer and Loviisa, Finland, during winter. At both locations, the new method agrees well with MLH derived from turbulent kinetic energy dissipation rate profiles obtained from vertically pointing measurements. The low-level scanning routine frequently indicated non-zero MLH less than 100 m above the surface. Such low MLHs were more common in wintertime Loviisa on the Baltic Sea coast than during summertime in Mediterranean Limassol.
Resumo:
We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5–150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.
Resumo:
Cell wall polysaccharides of wheat and rice endosperm are an important source of dietary fibre. Monoclonal antibodies specific to cell wall polysaccharides were used to determine polysaccharide dynamics during the development of both wheat and rice grain. Wheat and rice grain present near synchronous developmental processes and significantly different endosperm cell wall compositions, allowing the localisation of these polysaccharides to be related to developmental changes. Arabinoxylan (AX) and mixed-linkage glucan (MLG) have analogous cellular locations in both species, with deposition of AX and MLG coinciding with the start of grain filling. A glucuronoxylan (GUX) epitope was detected in rice, but not wheat endosperm cell walls. Callose has been reported to be associated with the formation of cell wall outgrowths during endosperm cellularisation and xyloglucan is here shown to be a component of these anticlinal extensions, occurring transiently in both species. Pectic homogalacturonan (HG) was abundant in cell walls of maternal tissues of wheat and rice grain, but only detected in endosperm cell walls of rice in an unesterified HG form. A rhamnogalacturonan-I (RG-I) backbone epitope was observed to be temporally regulated in both species, detected in endosperm cell walls from 12 DAA in rice and 20 DAA in wheat grain. Detection of the LM5 galactan epitope showed a clear distinction between wheat and rice, being detected at the earliest stages of development in rice endosperm cell walls, but not detected in wheat endosperm cell walls, only in maternal tissues. In contrast, the LM6 arabinan epitope was detected in both species around 8 DAA and was transient in wheat grain, but persisted in rice until maturity.
Resumo:
The composition of the extracellular matrix (ECM) of skeletal muscle fibres is a unique environment that supports the regenerative capacity of satellite cells; the resident stem cell population. The impact of environment has great bearing on key properties permitting satellite cells to carry out tissue repair. In this study, we have investigated the influence of the ECM and glycolytic metabolism on satellite cell emergence and migration- two early processes required for muscle repair. Our results show that both influence the rate at which satellite cells emerge from the sub-basal lamina position and their rate of migration. These studies highlight the necessity of performing analysis of satellite behaviour on their native substrate and will inform on the production of artificial scaffolds intended for medical uses.
Resumo:
The roles of some cake ingredients – oil, a leavening agent, and inulin – in the structure and physicochemical properties of batter and cakes were studied in four different formulations. Oil played an important role in the batter stability, due to its contribution to increasing batter viscosity and occluding air during mixing. The addition of the leavening agent was crucial to the final height and sponginess of the cakes. When inulin was used as a fat replacer, the absence of oil caused a decrease in the stability of the batter, where larger air bubbles were occluded. Inulin dispersed uniformly in the batter could create a competition for water with the flour components: gluten was not properly hydrated and some starch granules were not fully incorporated into the matrix. Thus, the development of a continuous network was disrupted and the cake was shorter and softer; it contained interconnected air cells in the crumb, and was easily crumbled. The structure studies were decisive to understand the physicochemical properties.
Resumo:
Sponge cakes have traditionally been manufactured using multistage mixing methods to enhance potential foam formation by the eggs. Today, use of all-in (single-stage) mixing methods is superseding multistage methods for large-scale batter preparation to reduce costs and production time. In this study, multistage and all-in mixing procedures and three final high-speed mixing times (3, 5, and 15 min) for sponge cake production were tested to optimize a mixing method for pilot-scale research. Mixing for 3 min produced batters with higher relative density values than did longer mixing times. These batters generated well-aerated cakes with high volume and low hardness. In contrast, after 5 and 15 min of high-speed mixing, batters with lower relative density and higher viscosity values were produced. Although higher bubble incorporation and retention were observed, longer mixing times produced better developed gluten networks, which stiffened the batters and inhibited bubble expansion during mixing. As a result, these batters did not expand properly and produced cakes with low volume, dense crumb, and high hardness values. Results for all-in mixing were similar to those for the multistage mixing procedure in terms of the physical properties of batters and cakes (i.e., relative density, elastic moduli, volume, total cell area, hardness, etc.). These results suggest the all-in mixing procedure with a final high-speed mixing time of 3 min is an appropriate mixing method for pilot-scale sponge cake production. The advantages of this method are reduced energy costs and production time.
Resumo:
We develop a new governance perspective on port–hinterland linkages and related port impacts. Many stakeholders in a port’s hinterland now demand tangible economic benefits from port activities, as a precondition for supporting port expansion and infrastructural investments. We use a governance lens to assess this farsighted contracting challenge. We find that most contemporary economic impact assessments of port investment projects pay scant attention to the contractual relationship challenges in port-hinterland relationships. In contrast, we focus explicitly on the spatial distribution of such impacts and the related contractual relationship issues facing port authorities or port users and their stakeholders in the port hinterland. We introduce a new concept, the Port Hinterland Impact (PHI) matrix, which focuses explicitly on the spatial distribution of port impacts and related contractual relationship challenges. The PHI matrix offers insight into port impacts using two dimensions: logistics dedicatedness, as an expression of Williamsonian asset specificity in the sphere of logistics contractual relationships, and geographic reach, with a longer reach typically reflecting the need for more complex contacting to overcome ‘distance’ challenges with external stakeholders. We use the PHI matrix in our empirical, governance-based analysis of contractual relationships between the port authorities in Antwerp and Zeebrugge, and their respective stakeholders.
Resumo:
Cell migration is a highly coordinated process and any aberration in the regulatory mechanisms could result in pathological conditions such as cancer. The ability of cancer cells to disseminate to distant sites within the body has made it difficult to treat. Cancer cells also exhibit plasticity that makes them able to interconvert from an elongated, mesenchymal morphology to an amoeboid blebbing form under different physiological conditions. Blebs are spherical membrane protrusions formed by actomyosin-mediated contractility of cortical actin resulting in increased hydrostatic pressure and subsequent detachment of the membrane from the cortex. Tumour cells use blebbing as an alternative mode of migration by squeezing through preexisting gaps in the ECM, and bleb formation is believed to be mediated by the Rho-ROCK signaling pathway. However, the involvement of transmembrane water and ion channels in cell blebbing has not been examined. In the present study, the role of the transmembrane water channels, aquaporins, transmembrane ion transporters and lipid signaling enzymes in the regulation of blebbing was investigated. Using 3D matrigel matrix as an in vitro model to mimic normal extracellular matrix, and a combination of confocal and time-lapse microscopy, it was found that AQP1 knockdown by siRNA ablated blebbing of HT1080 and ACHN cells, and overexpression of AQP1-GFP not only significantly increased bleb size with a corresponding decrease in bleb numbers, but also induced bleb formation in non-blebbing cell lines. Importantly, AQP1 overexpression reduces bleb lifespan due to faster bleb retraction. This novel finding of AQP1-facilitated bleb retraction requires the activity of the Na+/H+ pump as inhibition of the ion transporter, which was found localized to intracellular vesicles, blocked bleb retraction in both cell lines. This study also demonstrated that a differential regulation of cell blebbing by AQP isoforms exists as knockdown of AQP5 had no effect on bleb formation. Data from this study also demonstrates that the lipid signaling PLD2 signals through PA in the LPA-LPAR-Rho-ROCK axis to positively regulate bleb formation in both cell lines. Taken together, this work provides a novel role of AQP1 and Na+/H+ pump in regulation of cell blebbing, and this could be exploited in the development of new therapy to treat cancer.