964 resultados para Somatic Embryos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of the mechanisms that explain the initiation and early evolution of colorectal cancer should facilitate the development of new approaches to effective prevention and intervention. This review highlights deficiencies in the current model for colorectal neoplasia in which APC mutation is placed at the point of initiation. Other genes implicated in the regulation of apoptosis and DNA repair may underlie the early development of colorectal cancer. Inactivation of these genes may occur not by mutation or loss but through silencing mediated by methylation of the gene's promoter region. hMLH1 and MGMT are examples of DNA repair genes that are silenced by methylation. Loss of expression of hMLH1 and MGMT protein has been demonstrated immunohistochemically in serrated polyps. Multiple lines of evidence point to a serrated pathway of neoplasia that is driven by inhibition of apoptosis and the subsequent inactivation of DNA repair genes by promoter methylation. The earliest lesions in this pathway are aberrant crypt foci (ACF). These may develop Into hyperplastic polyps or transform while still of microscopic size into admixed polyps, serrated adenomas, or traditional adenomas. Cancers developing from these lesions may show high- or low-level microsatellite instability (MSI-H and MSI-L, respectively) or may be microsatellite stable (MSS). The suggested clinical model for this alternative pathway is the condition hyperplastic polyposis. If colorectal cancer is a heterogeneous disease comprising discrete subsets that evolve through different pathways, it is evident that these subsets will need to be studied individually in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent developments in evolutionary physiology have seen many of the long-held assumptions within comparative physiology receive rigorous experimental analysis. Studies of the adaptive significance of physiological acclimation exemplify this new evolutionary approach. The beneficial acclimation hypothesis (BAH) was proposed to describe the assumption that all acclimation changes enhance the physiological performance or fitness of an individual organism. To the surprise of most physiologists, all empirical examinations of the BAH have rejected its generality. However, we suggest that these examinations are neither direct nor complete tests of the functional benefit of acclimation. We consider them to be elegant analyses of the adaptive significance of developmental plasticity, a type of phenotypic plasticity that is very different from the traditional concept of acclimation that is used by comparative physiologists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The factors that control replication rate of the intracellular bacterium Wolbachia pipientis in its insect hosts are unknown and difficult to explore, given the complex interaction of symbiont and host genotypes. Using a strain of Wolbachia that is known to over-replicate and shorten the lifespan of its Drosophila melanogaster host, we have tracked the evolution of replication control in both somatic and reproductive tissues in a novel host/Wolbachia association. After transinfection (the transfer of a Wolbachia strain into a different species) of the over-replicating Wolbachia popcorn strain from D. metanogaster to Drosophila simulans, we demonstrated that initial high densities in the ovaries were in excess of what was required for perfect maternal transmission, and were likely causing reductions in reproductive fitness. Both densities and fitness costs associated with ovary infection rapidly declined in the generations after transinfection. The early death effect in D. simulans attenuated only slightly and was comparable to that induced in D. metanogaster. This study reveals a strong host involvement in Wolbachia replication rates, the independence of density control responses in different tissues, and the strength of natural selection acting on reproductive fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological studies of development of the egg parasitoid Trichogramma australicum Girault in the cotton bollworm, Helicoverpa armigera (Hubner), were conducted to provide benchmarks for assessing developmental rates in both natural hosts and artificial diets. Observations of living embryos and histological sections show that embryos proceed rapidly through cleavage and blastoderm formation and show a characteristic pinching or rotation 8 h after deposition. Eggs progressively increase in volume, primarily by increasing in diameter at the widest point. At 29 rectangle 1 C the duration of the egg stage is 22-24 h, the larval stage 27 h, the prepupal stage 50-52 h, and pupa 85 h. Larvae undergo dramatic shape changes as they ingest food but do not show signs of larval moults, reinforcing observations that there is only one larval instar. Criteria for staging the embryonic and postembryonic development in natural hosts will be used for future studies aimed at developing and refining artificial diets for Trichogramma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, Ich3 in the 1(st) thoracic segment, dch3 in the 2(nd) and 3(rd) thoracic segments and Ich5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and vch 1, in the wild type and mutants for Sex combs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructural features of Macropodinium moiri were investigated. The somatic cortex is composed of two lateral non-ciliated zones covered with trapezoidal plates and separated by a trough-like dorsoventral groove (DVG) which divides the cell into left and right halves. The somatic kineties occupy the margins of the DVG and are composed of monokinetids whose infraciliature shows a typical litostome pattern. The pellicular plates are lamellate, and separated by V-shaped grooves which are lined by thick-walled vacuoles. The DVG cortex is composed of electron-opaque U-shaped ribs which alternate with electron-lucent saccular structures. The DVG surface is composed of small regular pellicular sacs built up to form the ridges of the dorsal DVG. The vestibulum forms a laterally compressed cone with left/right differentiation. The basal section of its non-ciliated right side is internally lined (outer to innermost) by longitudinal fibres, nematodesmata and transverse microtubular ribbons. The left side bears the vestibular kineties and in its basal section is lined (outer to innermost) by small nematodesmata and transverse tubules. Cytoplasmic organelles include endoplasmic reticulum, starch granules and a single contactile vacuole surrounded by patches of nephridioplasm. Hydrogenosomes are absent and coccoid Gram-positive bacteria lie under the ciliated portions of the cell. This set of characteristics differs significantly from those of the all other trichostomes; Macropodiniidae is therefore designated Trichostomatia incertae sedis. A revised familial diagnosis of the Macropodiniidae is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains similar to16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available evidence suggests that there are at least two locations for dormancy mechanisms in primary dormant seeds: mechanisms based within the embryo covering structures, and mechanisms based within the embryo. Mechanisms within the covering structures may involve mechanical, permeability and chemical barriers to germination. Mechanisms within the embryo may involve the expression of certain genes, levels of certain plant growth regulators, the activity of important respiratory pathways or the mobilisation and utilisation of food reserves. In addition, some embryos may be too immature to germinate immediately and must undergo a further growth phase before germination is possible. An individual species could have one or several of these various dormancy mechanisms and these mechanisms need to be understood when selecting treatments to overcome dormancy. The way in which certain dormancy breaking agents are thought to work is discussed and practical applications of such agents in field situations are explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A successful embryo-rescue and culture protocol was developed for use with several indigenous Vigna species and mungbean cultivars grown in Australia. Germination of Vigna immature embryos and their subsequent development into plants was influenced by the time at which the embryos were isolated and by which medium additives were placed in the embryo-rescue medium. A medium containing MS basal nutrients with sucrose (88 mM), casein hydrolysate (500 mg L-1) and agar (8 g L-1) but devoid of plant-growth regulators was found to be the best for germination of immature embryos for all four Vigna species investigated. The protocol for successful germination of non-hybrid immature embryos was applied to the recovery of interspecific hybrids involving mungbean and five native Vigna species that had previously been found difficult to hybridise. Several putative hybrid plants were obtained including a confirmed interspecific cross between V. luteola (Jacq.) Benth and V. marina (Burm.) Merrill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The range of variability between individuals of the same chronological age (CA) in somatic and biological maturity is large and especially accentuated around the adolescent growth spurt. Maturity assessment is an important consideration when dealing with adolescents, from both a research perspective and youth sports stratification. A noninvasive, practical method predicting years from peak height velocity (a maturity offset value) by using anthropometric variables is developed in one sample and cross-validated in two different samples. Methods: Gender specific multiple regression equations were calculated on a sample of 152 Canadian children aged 8-16 yr (79 boys; 73 girls) who were followed through adolescence from 1991 to 1997, The equations included three somatic dimensions (height, sitting height, and leg length), CA, and their interactions. The equations were cross-validated on a Combined sample of Canadian (71 boys, 40 girls measured from 1964 through 1973) and Flemish children (50 boys, 48 girls measured from 1985 through 1999). Results: The coefficient of determination (R2) for the boys' model was 0.92 and for the girls' model 0.91 the SEEs were 0.49 and 0.50, respectively, Mean difference between actual and predicted maturity offset for the verification samples was 0.24 (SD 0.65) yr in boys and 0,001 (SD 0.68) yr in girls. Conclusion: Although the cross-validation meets statistical standards or acceptance, caution 1, warranted with regard to implementation. It is recommended that maturity offset be considered as a categorical rather than a continuous assessment. Nevertheless, the equations presented are a reliable, noninvasive and a practical solution for the measure of biological maturity for matching adolescent athletes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zebrafish has a number of distinct advantages as an experimental model in developmental biology. For example, large numbers of embryos can be generated in each lay, development proceeds rapidly through a very precise temporal staging which exhibits minimal batch-to-batch variability, embryos are transparent and imaging of wholemounts negates the need for tedious histological preparation while preserving three-dimensional spatial relationships. The zebrafish nervous system is proving a convenient model for studies of axon guidance because of its small size and highly stereotypical trajectory of axons. Moreover, a simple scaffold of axon tracts and nerves is established early and provides a template for subsequent development. The ease with which this template can be visualized as well as the ability to spatially resolve individual pioneer axons enables the role of specific cell-cell and molecular interactions to be clearly deciphered. We describe here the morphology and development of the earliest axon pathways in the embryonic zebrafish central nervous system and highlight the major questions that remain to be addressed with regard to axon guidance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.