982 resultados para Solid Waste Management
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.
Resumo:
Consolidation of international guidelines for the management of canine populations in urban areas and proposal of performance indicators The objective of this study is to propose a generic program for the management of urban canine populations with suggestion of performance indicators. The following international guidelines on canine population management were revised and consolidated: World Health Organization, World Organisation for Animal Health, World Society for the Protection of Animals, International Companion Animal Management Coalition, and the Food and Agriculture Organization. Management programs should cover: situation diagnosis, including estimates of population size; social participation with involvement of various sectors in the planning and execution of strategies; educational actions to promote humane values, animal welfare, community health, and responsible ownership (through purchase or adoption); environmental and waste management to eliminate sources of food and shelter; registration and identification of animals; animal health care, reproductive control; prevention and control of zoonoses; control of animal commerce; management of animal behavior and adequate solutions for abandoned animals; and laws regulating responsible ownership, prevention of abandonment and zoonoses. To monitor these actions, four groups of indicators are suggested: animal population indicators, human/animal interaction indicators, public service indicators, and zoonosis indicators. The management of stray canine populations requires political, sanitary, ethologic, ecologic, and humanitarian strategies that are socially acceptable and environmentally sustainable. Such measures must also include the control of zoonoses such as rabies and leishmaniasis, considering the concept of "one health," which benefits both the animals and people in the community.
Resumo:
Il presente elaborato è stato finalizzato allo sviluppo di un processo di digestione anaerobica della frazione organica dei rifiuti solidi urbani (FORSU oppure, in lingua inglese OFMSW, Organic Fraction of Municipal Solid Waste) provenienti da raccolta indifferenziata e conseguente produzione di biogas da impiegarsi per il recupero energetico. Questo lavoro rientra nell’ambito di un progetto, cofinanziato dalla Regione Emilia Romagna attraverso il Programma Regionale per la Ricerca Industriale, l’Innovazione e il Trasferimento Tecnologico (PRRIITT), sviluppato dal Dipartimento di Chimica Applicata e Scienza dei Materiali (DICASM) dell’Università di Bologna in collaborazione con la Facoltà di Ingegneria dell’Università di Ferrara e con la società Recupera s.r.l. che applicherà il processo nell’impianto pilota realizzato presso il proprio sito di biostabilizzazione e compostaggio ad Ostellato (FE). L’obiettivo è stato la verifica della possibilità di impiegare la frazione organica dei rifiuti indifferenziati per la produzione di biogas, e in particolare di metano, attraverso un processo di digestione anaerobica previo trattamento chimico oppure in codigestione con altri substrati organici facilmente fermentabili. E’ stata inoltre studiata la possibilità di impiego di reattori con biomassa adesa per migliorare la produzione specifica di metano e diminuire la lag phase. Dalla sperimentazione si può concludere che è possibile giungere allo sviluppo di metano dalla purea codigerendola assieme a refluo zootecnico. Per ottenere però produzioni significative la quantità di solidi volatili apportati dal rifiuto non deve superare il 50% dei solidi volatili complessivi. Viceversa, l’addizione di solfuri alla sola purea si è dimostrata ininfluente nel tentativo di sottrarre gli agenti inibitori della metanogenesi. Inoltre, l’impiego di supporti di riempimento lavorando attraverso processi batch sequenziali permette di eliminare, nei cicli successivi al primo, la lag phase dei batteri metanogeni ed incrementare la produzione specifica di metano.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Waste management is becoming, year after year, always more important both for the costs associated with it and for the ever increasing volumes of waste generated. The discussion on the fate of organic fraction of municipal solid waste (OFMSW) leads everyday to new solutions. Many alternatives are proposed, ranging from incineration to composting passing through anaerobic digestion. “For Biogas” is a collaborative effort, between C.I.R.S.A. and R.E.S. cooperative, whose main goal is to generate “green” energy from both biowaste and sludge anaerobic co-digestion. Specifically, the project include a pilot plant receiving dewatered sludge from both urban and agro-industrial sewage (DS) and the organic fraction of MSW (in 2/1 ratio) which is digested in absence of oxygen to produce biogas and digestate. Biogas is piped to a co-generation system producing power and heat reused in the digestion process itself, making it independent from the national grid. Digestate undergoes a process of mechanical separation giving a liquid fraction, introduced in the treatment plant, and a solid fraction disposed in landfill (in future it will be further processed to obtain compost). This work analyzed and estimated the impacts generated by the pilot plant in its operative phase. Once the model was been characterized, on the basis of the CML2001 methodology, a comparison is made with the present scenario assumed for OFMSW and DS. Actual scenario treats separately the two fractions: the organic one is sent to a composting plant, while sludge is sent to landfill. Results show that the most significant difference between the two scenarios is in the GWP category as the project "For Biogas" is able to generate “zero emission” power and heat. It also generates a smaller volume of waste for disposal. In conclusion, the analysis evaluated the performance of two alternative methods of management of OFMSW and DS, highlighting that "For Biogas" project is to be preferred to the actual scenario.
Resumo:
In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.
Resumo:
The increase in environmental and healthy concerns, combined with the possibility to exploit waste as a valuable energy resource, has led to explore alternative methods for waste final disposal. In this context, the energy conversion of Municipal Solid Waste (MSW) in Waste-To-Energy (WTE) power plant is increasing throughout Europe, both in terms of plants number and capacity, furthered by legislative directives. Due to the heterogeneous nature of waste, some differences with respect to a conventional fossil fuel power plant have to be considered in the energy conversion process. In fact, as a consequence of the well-known corrosion problems, the thermodynamic efficiency of WTE power plants typically ranging in the interval 25% ÷ 30%. The new Waste Framework Directive 2008/98/EC promotes production of energy from waste introducing an energy efficiency criteria (the so-called “R1 formula”) to evaluate plant recovery status. The aim of the Directive is to drive WTE facilities to maximize energy recovery and utilization of waste heat, in order to substitute energy produced with conventional fossil fuels fired power plants. This calls for novel approaches and possibilities to maximize the conversion of MSW into energy. In particular, the idea of an integrated configuration made up of a WTE and a Gas Turbine (GT) originates, driven by the desire to eliminate or, at least, mitigate limitations affecting the WTE conversion process bounding the thermodynamic efficiency of the cycle. The aim of this Ph.D thesis is to investigate, from a thermodynamic point of view, the integrated WTE-GT system sharing the steam cycle, sharing the flue gas paths or combining both ways. The carried out analysis investigates and defines the logic governing plants match in terms of steam production and steam turbine power output as function of the thermal powers introduced.
Resumo:
The aging process is characterized by the progressive fitness decline experienced at all the levels of physiological organization, from single molecules up to the whole organism. Studies confirmed inflammaging, a chronic low-level inflammation, as a deeply intertwined partner of the aging process, which may provide the “common soil” upon which age-related diseases develop and flourish. Thus, albeit inflammation per se represents a physiological process, it can rapidly become detrimental if it goes out of control causing an excess of local and systemic inflammatory response, a striking risk factor for the elderly population. Developing interventions to counteract the establishment of this state is thus a top priority. Diet, among other factors, represents a good candidate to regulate inflammation. Building on top of this consideration, the EU project NU-AGE is now trying to assess if a Mediterranean diet, fortified for the elderly population needs, may help in modulating inflammaging. To do so, NU-AGE enrolled a total of 1250 subjects, half of which followed a 1-year long diet, and characterized them by mean of the most advanced –omics and non –omics analyses. The aim of this thesis was the development of a solid data management pipeline able to efficiently cope with the results of these assays, which are now flowing inside a centralized database, ready to be used to test the most disparate scientific hypotheses. At the same time, the work hereby described encompasses the data analysis of the GEHA project, which was focused on identifying the genetic determinants of longevity, with a particular focus on developing and applying a method for detecting epistatic interactions in human mtDNA. Eventually, in an effort to propel the adoption of NGS technologies in everyday pipeline, we developed a NGS variant calling pipeline devoted to solve all the sequencing-related issues of the mtDNA.
Resumo:
Sustainable development is one of the biggest challenges of the twenty fist-century. Various university has begun the debate about the content of this concept and the ways in which to integrate it into their policy, organization and activities. Universities have a special responsibility to take over a leading position by demonstrating best practices that sustain and educate a sustainable society. For that reason universities have the opportunity to create the culture of sustainability for today’s student, and to set their expectations for how the world should be. This thesis aim at analyzing how Delft University of Technology and University of Bologna face the challenge of becoming a sustainable campus. In this context, both universities have been studied and analyzed following the International Sustainable Campus Network (ISCN) methodology that provides a common framework to formalize commitments and goals at campus level. In particular this work has been aimed to highlight which key performance indicators are essential to reach sustainability as a consequence the following aspects has been taken into consideration: energy use, water use, solid waste and recycling, carbon emission. Subsequently, in order to provide a better understanding of the current state of sustainability on University of Bologna and Delft University of Technology, and potential strategies to achieve the stated objective, a SWOT Analysis has been undertaken. Strengths, weaknesses, opportunities and threats have been shown to understand how the two universities can implement a synergy to improve each other. In the direction of framing a “Sustainable SWOT” has been considered the model proposed by People and Planet, so it has been necessary to evaluate important matters as for instance policy, investment, management, education and engagement. Regarding this, it has been fundamental to involve the main sustainability coordinators of the two universities, this has been achieved through a brainstorming session. Partnerships are key to the achievement of sustainability. The creation of a bridge between two universities aims to join forces and to create a new generation of talent. As a result, people can become able to support universities in the exchange of information, ideas, and best practices for achieving sustainable campus operations and integrating sustainability in research and teaching. For this purpose the project "SUCCESS" has been presented, the project aims to create an interactive European campus network that can be considered a strategic key player for sustainable campus innovation in Europe. Specifically, the main key performance indicators have been analyzed and the importance they have for the two universities and their strategic impact have been highlighted. For this reason, a survey was conducted with people who play crucial roles for sustainability within the two universities and they were asked to evaluate the KPIs of the project. This assessment has been relevant because has represented the foundation to develop a strategy to create a true collaboration.
Resumo:
This paper estimates cost functions for both municipal solid waste collection and disposal services and curbside recycling programs. Cost data are obtained from a national survey of randomly selected municipalities. Results suggest, perhaps unsurprisingly, that both marginal and average costs of recycling systems exceed those of waste collection and disposal systems. Economies of scale are estimated for all observed quantities of waste collection and disposal. Economies of scale for recycling disappear at high levels of recycling - marginal and average cost curves for recycling take on the usual U-shape. Waste and recycling costs are also estimated as functions of factor costs and program attributes.
Resumo:
This thesis examines three questions regarding the content of Bucknell University‟s waste stream and the contributors to campus recycling and solid waste disposal. The first asks, “What does Bucknell‟s waste stream consist of?” To answer this question, I designed a campus-wide waste audit procedure that sampled one dumpster from each of the eleven „activity‟ types on campus in order to better understand Bucknell‟s waste composition. The audit was implemented during the Fall semester of the 2011-2012 school year. The waste from each dumpster was sorted into several recyclable and non-recyclable categories and then weighed individually. Results showed the Bison and Carpenter Shop dumpsters to contain the highest percentage of divertible materials (through recycling and/or composting). When extrapolated, results also showed the Dining Services buildings and Facilities buildings to be the most waste dense in terms of pounds of waste generated per square foot. The Bison also generated the most overall waste by weight. The average composition of all dumpsters revealed that organic waste composed 24% of all waste, 23% was non-recyclable paper, and 20% was non-recyclable plastic. It will be important to move forward using these results to help create effective waste programs that target the appropriate areas of concern. My second question asks, “What influences waste behavior to contribute to this „picture‟ of the waste stream?” To answer this question, I created a survey that was sent out to randomly selected sub-group of the university‟s three constituencies: students, faculty, and staff. The survey sought responses regarding each constituency‟s solid waste disposal and recycling behavior, attitudes toward recycling, and motivating factors for solid waste disposal behaviors across different sectors of the university. Using regression analysis, I found three statistically significant motivating factors that influence solid waste disposal behavior: knowledge and awareness, moral value, and social norms. I further examined how a person‟s characteristics associate to these motivating factors and found that one‟s position on campus proved a significant association. Consistently, faculty and staff were strongly influenced by the aforementioned motivating factors, while students‟ behavior was less influenced by them. This suggests that new waste programs should target students to help increase the influence of these motivators to improve the recycling rate and lower overall solid waste disposal on campus. After making overall conclusions regarding the waste audit and survey, I ask my third question, which inquires, “What actions can Bucknell take to increase recycling rates and decrease solid waste generation?” Bucknell currently features several recycling and waste minimization programs on campus. However, using results from the waste audit and campus survey, we can better understand what are the issues of the waste stream, how do we go about addressing these issues, and who needs to be addressed. I propose several suggestions for projects that future students may take on for summer or thesis research. Suggestions include targeting the appropriate categories of waste that occur most frequently in the waste stream, as well as the building types that have the highest waste density and potential recovery rates. Additionally, certain groups on campus should be targeted more directly than others, namely the student body, which demonstrates the lowest influence by motivators of recycling and waste behavior. Several variables were identified as significant motivators of waste and recycling behavior, and could be used as program tactics to encourage more effective behavior.
Resumo:
Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.
Resumo:
This paper estimates the average social cost of municipal waste management as a function of the recycling rate. Social costs include all municipal costs and revenues, costs to recycling households to prepare materials estimated with an original method, external disposal costs, and external recycling benefits. Results suggest average social costs are minimized with recycling rates well below observed and mandated levels in Japan. Cost-minimizing municipalities are estimated to recycle less than the optimal rate. These results are robust to changes in the components of social costs, indicating that Japan and perhaps other developed countries may be setting inefficiently high recycling goals. (C) 2014 Elsevier Inc. All rights reserved.