979 resultados para Soft condensed matter
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structural evolution in silica sols prepared from tetraethoxysilane (TEOS) sonohydrolysis was studied 'in situ' using small-angle x-ray scattering (SAXS). The structure of the gelling system can be reasonably well described by a correlation function given by gamma(r) similar to (1/R(2))(1/r) exp(- r/xi), where xi is the structure correlation length and R is a chain persistence length, as an analogy to the Ornstein-Zernike theory in describing critical phenomenon. This approach is also expected for the scattering from some linear and branched molecules as polydisperse coils of linear chains and random f-functional branched polycondensates. The characteristic length. grows following an approximate power law with time t as xi similar to t(1) (with the exponent quite close to 1) while R remains undetermined but with a constant value, except at the beginning of the process in which the growth of. is slower and R increases by only about 15% with respect to the value of the initial sol. The structural evolution with time is compatible with an aggregation process by a phase separation by coarsening. The mechanism of growth seems to be faster than those typically observed for pure diffusion controlled cluster-cluster aggregation. This suggests that physical forces (hydrothermal forces) could be actuating together with diffusion in the gelling process of this system. The data apparently do not support a spinodal decomposition mechanism, at least when starting from the initial stable acid sol studied here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.
Resumo:
Current-voltage measurements performed on bulk AlxGa1-xAs equipped with Au/Ge/Ni contacts reveal surprising deviations from ohmic behaviour when the temperature is lowered to that of liquid nitrogen. Significant differences are observed between samples with x = 0.3 (direct band-gap material) and x = 0.5 (indirect band-gap material). The dominant states of the donor atoms Si (doping) or Ge are found to be responsible for such behaviour. Evidence for the existence of an effective-mass X-valley metastable state is also presented.
Resumo:
The use of AC/DC magnetic susceptibility and impedance measurements to detect oxygen depletion effects in La0.7Ca0.3MnO3 +/-delta and NiMn2O4+delta spinel-type compounds is reported. For the NiMn2O4, for which no Mn4+ was found, three superposed Debye relaxations were observed in the range 260-180 K. Otherwise, in La0.7Ca0.3MnO3, the argon annealed has contributed to a decrease in T-C, but the amount of Mn4+ is still too high to allow the observation of a relaxation in this frequency window. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The solid solution of PbZr1-xTixO3, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46 <= x <= 0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a bridge between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti = 52/48, 53/47) by hypertine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Systematic studies in manganites of spinel structure have been undertaken. We report on the magnetic properties of two particular cases, in which one of the transition metals, Mg2+ is non-magnetic (NiMgxMn2-xO4) or presents a stable oxidation state, Cu2+ (CoxCuyMnzO4, x + y + z = 3). The magnetic behaviour is described with respect to varying contents of cobalt, copper or manganese. A ferrimagnetic transition is observed at 110-120 K, which depends on the cobalt content. Presence of copper increases the coercive field by a factor of ten with respect to the parent compound NiMn2O4. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We discuss adsorbate-metal electrostatic interaction in the Anderson-Newns model.
Resumo:
The exact solution for the full electronic Hamiltonian for a two-level dimer is obtained. The parameter constellation (20) is reparametrized via orthogonal Slater atomic orbitals, yielding a three-parameter model. With the dimer embedded in a thermal bath, several temperature-dependent dynamical susceptibilities are computed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The cubic perovskite related material CaCu3Ti4O12 has attracted a great deal of attention due to the high values of the static dielectric constant, of order 104, approximately constant in the temperature range 100-600 K. The substitution of Ca by Cd results in a similar temperature dependence but a static dielectric constant more than one order of magnitude lower. A theoretical electronic structure study is performed on CaCu3Ti4O12 (CCTO) and CdCu3Ti4O12 (CdCTO) using a tight binding with overlap method. Although the calculations are performed in a paramagnetic configuration, excellent agreement with experiment was found for the calculated band gap of CCTO. In spite of the fact that the band structures of both systems look practically the same, a significant difference is found in the calculated bond strength of Ca-O and Cd-O pairs, driven by the presence of Ti, with Ca-O interaction in CCTO loosened with respect to Cd-O interaction in the cadmium compound. It is suggested that O vacancies are more easily formed in CCTO, this being related to the lower electronegativity of Ca as compared to Cd. The formation of oxygen vacancies could be the origin of the difference in the static dielectric constant of the two compounds.