986 resultados para Sintered porous body
Resumo:
The present study was carried out in order to establish an economical effective diet for the pacific white shrimp in the southern part conditions of Iran. With the consideration of three dietary energy levels (E1=262, E2=312, E3=362 kcal 100 g-1 diet) and six ratios of fish meal (FM) to soybean meal (SBM) [(P1=100%FM+0%SBM, P2=80%FM+20%SBM, P3=60%FM+40%SBM, P4=40%FM+60%SBM, P5=20%FM+80%SBM, P6=0%FM+100%SBM)], 18 experimental diets (with 36% crude protein) were prepared. Completely randomized design was used to assign 54 polyethylene 300 litre round tanks provided by aeration and flow through water system and was stocked by 19 juvenile as 3 replicates to each treatment. Shrimps average weight was about 0.77 grams at the start. After 56 days culture period, maximum growth and nutritional performances were observed in the P6E1 treatment (containing 100% soybean meal and 262 kcal 100 g-1 diet) and P5E1 treatment (containing 80% soybean meal and 262 kcal 100 g-1 diet). Also the highest survival rate of the shrimps was observed in the P1E1, P1E2, P3E3 and P5E3 treatments. Additionally interactive effect of different protein ratios and energy levels had significant difference on body protein, fat, fiber and ash contents (P<0.05). Results of the present study suggest the possibility replacement of at least 80% of dietary fish meal by soybean meal in the diet of pacific white shrimp in the conditions of southern part of Iran.
Resumo:
Present study deals with the family Soleidae (common sole) Euryglossa orientalis (Bl. & Schn.) of the order Pleuronectiformis from Karachi coast. Separate equation (regression line) for describing the length weight relationships for male and female combined are justified. Allometric studies were made on skeleton weight relative to the length and the weight of the fish. The regression equation 'a' and 'b' values of standard length/skeleton weight and body weight/skeleton weight are statistically significant.
Resumo:
Ink-jet printing of nano-metallic colloidal fluids on to porous media such as coated papers has become a viable method to produce conductive tracks for low-cost, disposable printed electronic devices. However, the formation of well-defined and functional tracks on an absorbing surface is controlled by the drop imbibition dynamics in addition to the well-studied post-impact drop spreading behavior. This study represents the first investigation of the real-time imbibition of ink-jet deposited nano-Cu colloid drops on to coated paper substrates. In addition, the same ink was deposited on to a non-porous polymer surface as a control substrate. By using high-speed video imaging to capture the deposition of ink-jet drops, the time-scales of drop spreading and imbibition were quantified and compared with model predictions. The influences of the coating pore size on the bulk absorption rate and nano-Cu particle distribution have also been studied.
Resumo:
This 1991-1992 study was designed to expand previous research on body weight (BW) in Tibetan macaques (Macaca thibetana) at Mt. Emei. Data on BW were collected in late autumn (LA) and late winter (LW) in groups ranging above 1,200 m. Over the winter, the BW fell significantly from a mean of 16.8 to 11.4 kg in females and from 19.5 to 17.0 kg in males. The previously reported BW means of 12.8 kg for females and 18.3 kg for males, measured in late spring, are near the center of the annual BW range for this species. In addition, with the sharper decline of female BW (- 32% vs. - 13% seen in males), the sexual dimorphism ((M) over bar/(F) over bar) in BW increased from 1.16 in LA to 1.49 in LW. This finding may be related to differential parental investment by two sexes. (C) 1994 Wiley-Liss, Inc.
Resumo:
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.
Resumo:
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane-air flames (Le=0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H 2 and H 2O through the preheat zone ahead of CO 2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO 2 is accumulated. © 2011 The Combustion Institute.
Resumo:
The performance of porous blocks containing three different reactive magnesia-based cements - namely magnesia alone, magnesium oxide: Portland cement (PC) in 1:1 ratio, cured in ambient conditions, and magnesia alone, cured at elevated carbon dioxide conditions, in hydrochloric acid and magnesium sulfate solution - was investigated. Different aggressive chemical solution conditions were used, to which the samples were exposed for up to 12 months and then tested for strength and microstructure. The performance was also compared with that of standard PC-based blocks. The results showed the significant resistance to chemical attack offered by magnesia, both alone and with PC blend in the porous blocks when cured under ambient carbon dioxide conditions, and confirmed the much poorer performance of blocks made from PC alone. The blocks of solely magnesia cured in elevated carbon dioxide conditions, at 20% concentration, showed slightly lower resistance to acid attack than PC; however, the resistance to sulfate attack was much higher. © 2012 Thomas Telford Ltd.
Resumo:
Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.
Resumo:
Metal foams fabricated via sintering offer novel mechanical and acoustic properties. Previously, polymer foams have been used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost-effective means for the mass-production of open-cell metal foams. The static flow resistance of sintered metal foams was characterized for a range of practical pore sizes and porosities. The measured values for the flow resistance were subsequently used in a phenomenological acoustic model to predict the impedances and propagation constants of the foams. The predictions were then compared to acoustic measurements. At low frequencies (0-1000Hz), the phenomenological model captures the magnitude and frequency dependence of the absorption. At higher frequencies, as expected, the phenomenological model underpredicted the acoustic properties of the foams. However, an alternative microstructural model demonstrated good correlation to the measured results in this frequency range. The effects of foam type and arrangement on the absorption pattern were examined. General trends were identified for enhancing the low frequency performance of an acoustic absorber incorporating sintered foams.