939 resultados para Single-molecule detection
Resumo:
Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Oral pathogens, including periodontopathic bacteria, are thought to be aetiological factors in the development of cardiovascular disease. In this study, the presence of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum-periodonticum-simiae group, Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Tannerella forsythia in atheromatous plaques from coronary arteries was determined by real-time PCR. Forty-four patients displaying cardiovascular disease were submitted to periodontal examination and endarterectomy of coronary arteries. Approximately 60-100 mg atherosclerotic tissue was removed surgically and DNA was obtained. Quantitative detection of periodontopathic bacteria was performed using universal and species-specific TaqMan probe/primer sets. Total bacterial and periodontopathic bacterial DNA were found in 94.9 and 92.3 %, respectively, of the atheromatous plaques from periodontitis patients, and in 80.0 and 20.0%, respectively, of atherosclerotic tissues from periodontally healthy subjects. All periodontal bacteria except for the F. nucleatum-periodonticum-simiae group were detected, and their DNA represented 47.3 % of the total bacterial DNA obtained from periodontitis; patients. Porphyromonas gingivalis, A. actinomycetemcomitans and Prevotella intermedia were detected most often. The presence of two or more periodontal species could be observed in 64.1 % of the samples. In addition, even in samples in which a single periodontal species was detected, additional unidentified microbial DNA could be observed. The significant number of periodontopathic bacterial DNA species in atherosclerotic tissue samples from patients with periodontitis suggests that the presence of these micro-organisms in coronary lesions is not coincidental and that they may in fact contribute to the development of vascular diseases.
Resumo:
Background and Objective: Inflammatory cytokines such as tumor necrosis factor-alpha are involved in the pathogenesis of periodontal diseases. A high between-subject variation in the level of tumor necrosis factor-alpha mRNA has been verified, which may be a result of genetic polymorphisms and/or the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola (called the red complex) and Aggregatibacter actinomycetemcomitans. In this study, we investigated the effect of the tumor necrosis factor-alpha (TNFA) -308G/A gene polymorphism and of periodontopathogens on the tumor necrosis factor-alpha levels in the periodontal tissues of nonsmoking patients with chronic periodontitis (n = 127) and in control subjects (n = 177). Material and Methods: The TNFA-308G/A single nucleotide polymorphism was investigated using polymerase chain reaction-restriction fragment length polymorphism analysis, whereas the tumor necrosis factor-alpha levels and the periodontopathogen load were determined using real-time polymerase chain reaction. Results: No statistically significant differences were found in the frequency of the TNFA-308 single nucleotide polymorphism in control and chronic periodontitis groups, in spite of the higher frequency of the A allele in the chronic periodontitis group. The concomitant analyses of genotypes and periodontopathogens demonstrated that TNFA-308 GA/AA genotypes and the red-complex periodontopathogens were independently associated with increased levels of tumor necrosis factor-alpha in periodontal tissues, and no additive effect was seen when both factors were present. P. gingivalis, T. forsythia and T. denticola counts were positively correlated with the level of tumor necrosis factor-alpha. TNFA-308 genotypes were not associated with the periodontopathogen detection odds or with the bacterial load. Conclusion: Our results demonstrate that the TNFA-308 A allele and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased tissues of nonsmoking chronic periodontitis patients and consequently are potentially involved in determining the disease outcome.
Resumo:
A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit`s pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.
Resumo:
O objetivo deste estudo foi aperfeiçoar um ensaio de PCR que amplificasse um fragmento de 843 pares de bases do gene p28 da Ehrlichia canis e compará-lo com outros dois métodos de PCR utilizados para amplificar partes do gene 16S rRNA e dsb do gênero Ehrlichia. Amostras sanguíneas foram colhidas de cães com diagnóstico clínico de erliquiose. A amplificação do gene p28 pela PCR produziu um fragmento de 843pb e esse ensaio permitiu a detecção do DNA de um parasita dentre 1 bilhão de células. Todas as amostras positivas detectadas pela PCR baseada no gene p28 foram também positivas pela nested PCR para detecção do gene 16S rRNA e também pela PCR dsb. Dentre as amostras negativas para a PCR p28, 55,3% foram co-negativas, mas 27,6% foram positivas pela PCR baseada nos genes 16S rRNA e dsb. A PCR p28 parece ser um teste útil para detecção molecular de E. canis, entretanto otimizações na sensibilidade nesta PCR são necessárias, para que esta técnica se torne uma importante alternativa no diagnóstico da erliquiose canina.
Resumo:
Lettuce mosaic virus (LMV)-Most isolates can infect and are seed-borne in cultivars containing the mol gene. A reverse transcription and polymerase chain reaction (RT-PCR)-based test was developed for the specific detection of LMV-Most isolates. Based on the complete genome sequences of three LMV isolates belonging respectively to the Most type, the Common type and neither of these two types, three different assays were compared: (i) presence of a diagnostic restriction site in the region of the genome encoding the variable N-terminus of the capsid protein, in the 3' end of the genome, (ii) RT-PCR using primers designed to amplify a cDNA corresponding to a portion of the P1 coding region, in the 5' end of the genome and (iii) RT-PCR using primers designed to amplify a central region of the genome. The assays were performed against a collection of 21 isolates from different geographical origins and representing the molecular variability of LMV. RT-PCR of the central region of the genome was preferred because its results are expected to be less affected by natural recombination between LMV isolates, and it allows sensitive detection of LMV-Most in situations of single as well as mixed contamination. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cateteres venosos centrais inseridos em pacientes internados em unidade de terapia intensiva foram avaliados por métodos microbiológicos (cultura semi-quantitativa) e microscopia eletrônica de varredura a fim de detectar adesão microbiana e correlacionar com a cultura de sangue. Durante o período de estudo, foram avaliados 59 pacientes com cateter venoso central. A idade dos pacientes, sexo, sítio de inserção e tempo de permanência do cateter foram anotados. O cateter era de poliuretano não tunelizado e de único lúmen. O sangue para cultura foi coletado no momento da remoção do cateter. de 63 pontas de cateteres, 30 (47,6%) foram colonizadas e a infecção encontrada em 5 (23,8%) cateteres. A infecção foi mais prevalente em 26 pacientes (41,3%) com cateteres inseridos em veia subclávia do que nos 3 (3,2%) inseridos em veia jugular. A infecção foi observada com mais freqüência em cateteres com tempo de permanência maior do que sete dias. Os microrganismos isolados incluíram 32 estafilococos coagulase-negativa (29,7%), 61 bactérias Gram-negativas (52,9%), 9 estafilcocos coagulase-positiva (8,3%) e 3 leveduras (2,7%). Como agentes causais de infecções em unidade de terapia intensiva foram isolados E. aerogenes, P. aeruginosa, A. baumannii. Os antimicrobianos com maior atividade in vitro contra as bactérias Gram-negativas foram o imipenem e contra as Gram-positivas vancomicina, cefepime, penicilina, rifampicina e tetraciclina. As análises por microscopia eletrônica de varredura revelaram biofilmes sobre a superfície de todos os cateteres examinados.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)