937 resultados para Single Frequency Bioimpedance
Resumo:
Introduction: Eccentric exercise (EE) is a commonly used treatment for Achilles tendinopathy. While vibrations in the 8–12 Hz frequency range generated during eccentric muscle actions have been put forward as a potential mechanism for the beneficial effect of EE, optimal loading parameters required to expedite recovery are currently unknown. Alfredson's original protocol employed 90 repetitions of eccentric loading, however abbreviated protocols consisting of fewer repetitions (typically 45) have been developed, albeit with less beneficial effect. Given that 8–12 Hz vibrations generated during isometric muscle actions have been previously shown to increase with fatigue, this research evaluated the effect of exercise repetition on motor output vibrations generated during EE by investigating the frequency characteristics of ground reaction force (GRF) recorded throughout the 90 repetitions of Alfredson's protocol. Methods: Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. GRF was recorded at a frequency of 1000 Hz throughout the exercise protocol. The frequency power spectrum of the resultant GRF was calculated and normalized to total power. Relative spectral power was summed over 1 Hz widows within the frequency rage 7.5–11.5 Hz. The effect of each additional exercise set (15 repetitions) on the relative power within each widow was investigated using a general linear modelling approach. Results: The magnitude of peak relative power within the 7.5–11.5 Hz bandwidth increased across the six exercise sets from 0.03 in exercise set one to 0.12 in exercise set six (P < 0.05). Following the 4th set of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. Discussion: This study has demonstrated that successive repetitions of eccentric loading over six exercise sets results in an increase in the amplitude of motor output vibrations in the 7.5–11.5 Hz bandwidth, with an increase in the frequency of these vibrations occurring after the 4th set (60th repetition). These findings are consistent with findings from previous studies of muscle fatigue. Assuming that the magnitude and frequency of these vibrations represent important stimuli for tendon remodelling as hypothesized within the literature, the findings of this study question the role of abbreviated EE protocols and raise the question; can EE protocols for tendinopathy be optimized by performing eccentric loading to fatigue?
Resumo:
Introduction Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterised by greater power in the 8-12Hz bandwidth when compared to that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy., Methods Eleven male adults with unilateral mid-portion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Results Eccentric exercise was characterised by a significantly greater proportion of spectral power between 4.5 and 11.5Hz when compared to concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9Hz, rather than 10Hz in the control limb. Conclusions Compared to healthy tendon, Achilles tendinopathy was characterised by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness which have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons., (C)2012The American College of Sports Medicine
Resumo:
Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the material freezing points equipped with a continuous monitoring system. The investigation of the drying characteristics has been conducted in the temperature range -10~25oC and the airflow in the range 1.5~2.5 m/s. Some experiments were conducted as a single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air parameters on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitivity of the temperature. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.
Resumo:
Amonia borane (AB) has been identified as a potential candidate highcapacity hydrogen storage material. This work probes the adsorption and dissociation of AB inside and outside single-walled carbon nanotubes (SWCNTs) within the framework of density functional theory. The dissociation barriers of AB have been calculated and compared with that of the isolated AB molecule. On the basis of the present calculations, no notable improvement results from SWCNT confinement; on the contrary, the dissociation barrier slightly increases with respect to isolated AB.
Resumo:
Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.
Resumo:
The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.
Resumo:
We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.
Resumo:
The sidewall additions of diazomethane to (n, n), n = 3–10 armchair single-walled carbon nanotubes (SWCNTs) on two different orientations of C–C bonds have been studied using the ONIOM(B3LYP/6-31G(d):PM3) approach. The binding energies of SWCNTs complexes with CH2N2, CH2 and their transition-state structures were computed at the B3LYP/6-31G(d) level. The effects of diameters of armchair SWCNTs on their binding energies were studied. Relative reactivities of all the SWCNTs and their complexes based on their frontier orbital energies gaps are reported.
Resumo:
In this work, ab initio density functional theory (DFT) calculations are performed to study the structural and electronic properties of diazonium reagent functionalized (4, 4) single-walled carbon nanotube (SWCNT). We find the aryl group covalently bonds with SWCNT and prefers to be perpendicular to the side wall of nanotube. It has a rotational barrier of 0.35 eV around the formed aryl-tube bond axis and should be thermodynamically stable at room temperature. Additionally, new peaks appeared around the Fermi energy in the density of state (DOS) due to the weak band dispersion. Increasing of the coverage of the functional group will result in significant upshift of the Fermi level.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.
Resumo:
This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.
Resumo:
The count-min sketch is a useful data structure for recording and estimating the frequency of string occurrences, such as passwords, in sub-linear space with high accuracy. However, it cannot be used to draw conclusions on groups of strings that are similar, for example close in Hamming distance. This paper introduces a variant of the count-min sketch which allows for estimating counts within a specified Hamming distance of the queried string. This variant can be used to prevent users from choosing popular passwords, like the original sketch, but it also allows for a more efficient method of analysing password statistics.
Resumo:
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin’s lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.