991 resultados para Simple interest
Resumo:
What are the characteristics of the process by which an intent is transformed into a plan and then a program? How is a program debugged? This paper analyzes these questions in the context of understanding simple turtle programs. To understand and debug a program, a description of its intent is required. For turtle programs, this is a model of the desired geometric picture. a picture language is provided for this purpose. Annotation is necessary for documenting the performance of a program in such a way that the system can examine the procedures behavior as well as consider hypothetical lines of development due to tentative debugging edits. A descriptive framework representing both causality and teleology is developed. To understand the relation between program and model, the plan must be known. The plan is a description of the methodology for accomplishing the model. Concepts are explicated for translating the global intent of a declarative model into the local imperative code of a program. Given the plan, model and program, the system can interpret the picture and recognize inconsistencies. The description of the discrepancies between the picture actually produced by the program and the intended scene is the input to a debugging system. Repair of the program is based on a combination of general debugging techniques and specific fixing knowledge associated with the geometric model primitives. In both the plan and repairing the bugs, the system exhibits an interesting style of analysis. It is capable of debugging itself and reformulating its analysis of a plan or bug in response to self-criticism. In this fashion, it can qualitatively reformulate its theory of the program or error to account for surprises or anomalies.
Resumo:
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in < 10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research.
Resumo:
A multi-plate (NIP) mathematical model was proposed by frontal analysis to evaluate nonlinear chromatographic performance. One of its advantages is that the parameters may be easily calculated from experimental data. Moreover, there is a good correlation between it and the equilibrium-dispersive (E-D) or Thomas models. This shows that it can well accommodate both types of band broadening that is comprised of either diffusion-dominated processes or kinetic sorption processes. The MP model can well describe experimental breakthrough curves that were obtained from membrane affinity chromatography and column reversed-phase liquid chromatography. Furthermore, the coefficients of mass transfer may be calculated according to the relationship between the MP model and the E-D or Thomas models. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
BackgroundMechanical ventilation is important in caring for patients with critical illness. Clinical complications, increased mortality, and high costs of health care are associated with prolonged ventilatory support or premature discontinuation of mechanical ventilation. Weaning refers to the process of gradually or abruptly withdrawing mechanical ventilation. the weaning process begins after partial or complete resolution of the underlying pathophysiology precipitating respiratory failure and ends with weaning success (successful extubation in intubated patients or permanent withdrawal of ventilatory support in tracheostomized patients).ObjectivesTo evaluate the effectiveness and safety of two strategies, a T-tube and pressure support ventilation, for weaning adult patients with respiratory failure that required invasive mechanical ventilation for at least 24 hours, measuring weaning success and other clinically important outcomes.Search methodsWe searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 6); MEDLINE (via PubMed) (1966 to June 2012); EMBASE (January 1980 to June 2012); LILACS (1986 to June 2012); CINAHL (1982 to June 2012); SciELO (from 1997 to August 2012); thesis repository of CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) (http://capesdw.capes.gov.br/capesdw/) (August 2012); and Current Controlled Trials (August 2012).We reran the search in December 2013. We will deal with any studies of interest when we update the review.Selection criteriaWe included randomized controlled trials (RCTs) that compared a T-tube with pressure support (PS) for the conduct of spontaneous breathing trials and as methods of gradual weaning of adult patients with respiratory failure of various aetiologies who received invasive mechanical ventilation for at least 24 hours.Data collection and analysisTwo authors extracted data and assessed the methodological quality of the included studies. Meta-analyses using the random-effects model were conducted for nine outcomes. Relative risk (RR) and mean difference (MD) or standardized mean difference (SMD) were used to estimate the treatment effect, with 95% confidence intervals (CI).Main resultsWe included nine RCTs with 1208 patients; 622 patients were randomized to a PS spontaneous breathing trial (SBT) and 586 to a T-tube SBT. the studies were classified into three categories of weaning: simple, difficult, and prolonged. Four studies placed patients in two categories of weaning. Pressure support ventilation (PSV) and a T-tube were used directly as SBTs in four studies (844 patients, 69.9% of the sample). in 186 patients (15.4%) both interventions were used along with gradual weaning from mechanical ventilation; the PS was gradually decreased, twice a day, until it was minimal and periods with a T-tube were gradually increased to two and eight hours for patients with difficult and prolonged weaning. in two studies (14.7% of patients) the PS was lowered to 2 to 4 cm H2O and 3 to 5 cm H2O based on ventilatory parameters until the minimal PS levels were reached. PS was then compared to the trial with the T-tube (TT).We identified 33 different reported outcomes in the included studies; we took 14 of them into consideration and performed meta-analyses on nine. With regard to the sequence of allocation generation, allocation concealment, selective reporting and attrition bias, no study presented a high risk of bias. We found no clear evidence of a difference between PS and TT for weaning success (RR 1.07, 95% CI 0.97 to 1.17, 9 studies, low quality of evidence), intensive care unit (ICU) mortality (RR 0.81, 95% CI 0.53 to 1.23, 5 studies, low quality of evidence), reintubation (RR 0.92, 95% CI 0.66 to 1.26, 7 studies, low quality evidence), ICU and long-term weaning unit (LWU) length of stay (MD -7.08 days, 95% CI -16.26 to 2.1, 2 studies, low quality of evidence) and pneumonia (RR 0.67, 95% CI 0.08 to 5.85, 2 studies, low quality of evidence). PS was significantly superior to the TT for successful SBTs (RR 1.09, 95% CI 1.02 to 1.17, 4 studies, moderate quality of evidence). Four studies reported on weaning duration, however we were unable to combined the study data because of differences in how the studies presented their data. One study was at high risk of other bias and four studies were at high risk for detection bias. Three studies reported that the weaning duration was shorter with PS, and in one study the duration was shorter in patients with a TT.Authors' conclusionsTo date, we have found evidence of generally low quality from studies comparing pressure support ventilation (PSV) and with a T-tube. the effects on weaning success, ICU mortality, reintubation, ICU and LWU length of stay, and pneumonia were imprecise. However, PSV was more effective than a T-tube for successful spontaneous breathing trials (SBTs) among patients with simple weaning. Based on the findings of single trials, three studies presented a shorter weaning duration in the group undergoing PS SBT, however a fourth study found a shorter weaning duration with a T-tube.
Resumo:
Aims Surgery for infective endocarditis (IE) is associated with high mortality. Our objectives were to describe the experience with surgical treatment for IE in Spain, and to identify predictors of in-hospital mortality. Methods Prospective cohort of 1000 consecutive patients with IE. Data were collected in 26 Spanish hospitals. Results Surgery was performed in 437 patients (43.7%). Patients treated with surgery were younger and predominantly male. They presented fewer comorbid conditions and more often had negative blood cultures and heart failure. In-hospital mortality after surgery was lower than in the medical therapy group (24.3 vs 30.7%, p = 0.02). In patients treated with surgery, endocarditis involved a native valve in 267 patients (61.1%), a prosthetic valve in 122 (27.9%), and a pacemaker lead with no clear further valve involvement in 48 (11.0%). The most common aetiologies were Staphylococcus (186, 42.6%), Streptococcus (97, 22.2%), and Enterococcus (49, 11.2%). The main indications for surgery were heart failure and severe valve regurgitation. A risk score for in-hospital mortality was developed using 7 prognostic variables with a similar predictive value (OR between 1.7 and 2.3): PALSUSE: prosthetic valve, age ≥ 70, large intracardiac destruction, Staphylococcus spp, urgent surgery, sex [female], EuroSCORE ≥ 10. In-hospital mortality ranged from 0% in patients with a PALSUSE score of 0 to 45.4% in patients with PALSUSE score > 3. Conclusions The prognosis of IE surgery is highly variable. The PALSUSE score could help to identify patients with higher in-hospital mortality.
Resumo:
Thomas, R., Spink, S., Durbin, J. & Urquhart, C. (2005). NHS Wales user needs study including knowledgebase tools report. Report for Informing Healthcare Strategy implementation programme. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: Informing Healthcare, NHS Wales
Resumo:
Yeoman, A., Durbin, J. & Urquhart, C. (2004). Evaluating SWICE-R (South West Information for Clinical Effectiveness - Rural). Final report for South West Workforce Development Confederations, (Knowledge Resources Development Unit). Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: South West WDCs (NHS)
Resumo:
Urquhart, C., Spink, S., Thomas, R., Yeoman, A., Durbin, J., Turner, J., Fenton, R. & Armstrong, C. (2004). JUSTEIS: JISC Usage Surveys: Trends in Electronic Information Services Final report 2003/2004 Cycle Five. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: JISC
Resumo:
Canals, A.; Breen, A. R.; Ofman, L.; Moran, P. J.; Fallows, R. A., Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements, Annales Geophysicae, vol. 20, Issue 9, pp.1265-1277
Resumo:
Distributed hash tables have recently become a useful building block for a variety of distributed applications. However, current schemes based upon consistent hashing require both considerable implementation complexity and substantial storage overhead to achieve desired load balancing goals. We argue in this paper that these goals can b e achieved more simply and more cost-effectively. First, we suggest the direct application of the "power of two choices" paradigm, whereby an item is stored at the less loaded of two (or more) random alternatives. We then consider how associating a small constant number of hash values with a key can naturally b e extended to support other load balancing methods, including load-stealing or load-shedding schemes, as well as providing natural fault-tolerance mechanisms.
Resumo:
The isomorphisms holding in all models of the simply typed lambda calculus with surjective and terminal objects are well studied - these models are exactly the Cartesian closed categories. Isomorphism of two simple types in such a model is decidable by reduction to a normal form and comparison under a finite number of permutations (Bruce, Di Cosmo, and Longo 1992). Unfortunately, these normal forms may be exponentially larger than the original types so this construction decides isomorphism in exponential time. We show how using space-sharing/hash-consing techniques and memoization can be used to decide isomorphism in practical polynomial time (low degree, small hidden constant). Other researchers have investigated simple type isomorphism in relation to, among other potential applications, type-based retrieval of software modules from libraries and automatic generation of bridge code for multi-language systems. Our result makes such potential applications practically feasible.
Resumo:
Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.
Resumo:
The analysis of energy detector systems is a well studied topic in the literature: numerous models have been derived describing the behaviour of single and multiple antenna architectures operating in a variety of radio environments. However, in many cases of interest, these models are not in a closed form and so their evaluation requires the use of numerical methods. In general, these are computationally expensive, which can cause difficulties in certain scenarios, such as in the optimisation of device parameters on low cost hardware. The problem becomes acute in situations where the signal to noise ratio is small and reliable detection is to be ensured or where the number of samples of the received signal is large. Furthermore, due to the analytic complexity of the models, further insight into the behaviour of various system parameters of interest is not readily apparent. In this thesis, an approximation based approach is taken towards the analysis of such systems. By focusing on the situations where exact analyses become complicated, and making a small number of astute simplifications to the underlying mathematical models, it is possible to derive novel, accurate and compact descriptions of system behaviour. Approximations are derived for the analysis of energy detectors with single and multiple antennae operating on additive white Gaussian noise (AWGN) and independent and identically distributed Rayleigh, Nakagami-m and Rice channels; in the multiple antenna case, approximations are derived for systems with maximal ratio combiner (MRC), equal gain combiner (EGC) and square law combiner (SLC) diversity. In each case, error bounds are derived describing the maximum error resulting from the use of the approximations. In addition, it is demonstrated that the derived approximations require fewer computations of simple functions than any of the exact models available in the literature. Consequently, the regions of applicability of the approximations directly complement the regions of applicability of the available exact models. Further novel approximations for other system parameters of interest, such as sample complexity, minimum detectable signal to noise ratio and diversity gain, are also derived. In the course of the analysis, a novel theorem describing the convergence of the chi square, noncentral chi square and gamma distributions towards the normal distribution is derived. The theorem describes a tight upper bound on the error resulting from the application of the central limit theorem to random variables of the aforementioned distributions and gives a much better description of the resulting error than existing Berry-Esseen type bounds. A second novel theorem, providing an upper bound on the maximum error resulting from the use of the central limit theorem to approximate the noncentral chi square distribution where the noncentrality parameter is a multiple of the number of degrees of freedom, is also derived.
Resumo:
Existing work in Computer Science and Electronic Engineering demonstrates that Digital Signal Processing techniques can effectively identify the presence of stress in the speech signal. These techniques use datasets containing real or actual stress samples i.e. real-life stress such as 911 calls and so on. Studies that use simulated or laboratory-induced stress have been less successful and inconsistent. Pervasive, ubiquitous computing is increasingly moving towards voice-activated and voice-controlled systems and devices. Speech recognition and speaker identification algorithms will have to improve and take emotional speech into account. Modelling the influence of stress on speech and voice is of interest to researchers from many different disciplines including security, telecommunications, psychology, speech science, forensics and Human Computer Interaction (HCI). The aim of this work is to assess the impact of moderate stress on the speech signal. In order to do this, a dataset of laboratory-induced stress is required. While attempting to build this dataset it became apparent that reliably inducing measurable stress in a controlled environment, when speech is a requirement, is a challenging task. This work focuses on the use of a variety of stressors to elicit a stress response during tasks that involve speech content. Biosignal analysis (commercial Brain Computer Interfaces, eye tracking and skin resistance) is used to verify and quantify the stress response, if any. This thesis explains the basis of the author’s hypotheses on the elicitation of affectively-toned speech and presents the results of several studies carried out throughout the PhD research period. These results show that the elicitation of stress, particularly the induction of affectively-toned speech, is not a simple matter and that many modulating factors influence the stress response process. A model is proposed to reflect the author’s hypothesis on the emotional response pathways relating to the elicitation of stress with a required speech content. Finally the author provides guidelines and recommendations for future research on speech under stress. Further research paths are identified and a roadmap for future research in this area is defined.