991 resultados para Simple Wave
Resumo:
The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.
Resumo:
We investigate the existence of wavelike solution for the logistic coupled map lattices for which the spatiotemporal periodic patterns can be predicted by a simple two-dimensional mapping. The existence of such wavelike solutions is proved by the implicit function theorem with constraints. We also examine the stabilities of these wave solutions under perturbations of uniform small deformation type. We show that in some specific cases these perturbations are completely general. The technique used in this paper is also applicable to investigate other space-time regular patterns.
Resumo:
In this paper, the wave pattern characteristics of shock-induced two-phase nozzle Hows with the quiescent or moving dusty gas ahead of the incident-shock front has been investigated by using high-resolution numerical method. As compared with the corresponding results in single-phase nozzle flows of the pure gas, obvious differences between these two kinds of flows can be obtained.
Resumo:
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.
Resumo:
A molecular dynamics method is used to analyze the dynamic propagation of an atomistic crack tip. The simulation shows that the crack propagates at a relatively constant global velocity which is well below the Rayleigh wave velocity. However the local propagation velocity oscillates violently, and it is limited by the longitudinal wave velocity. The crack velocity oscillation is caused by a repeated process of crack tip blunting and sharpening. When the crack tip opening displacement exceeds a certain critical value, a lattice instability takes place and results in dislocation emissions from the crack tip. Based on this concept, a criterion for dislocation emission from a moving crack tip is proposed. The simulation also identifies the emitted dislocation as a source for microcrack nucleation. A simple method is used to examine this nucleation process. (C) 1996 American Institute of Physics.
Resumo:
Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.