963 resultados para Sewage -- Purification -- Activated sludge process
Resumo:
NFAT (nuclear factor of activated T cells) is a family of transcription factors implicated in the control of cytokine and early immune response gene expression. Recent studies have pointed to a role for NFAT proteins in gene regulation outside of the immune system. Herein we demonstrate that NFAT proteins are present in 3T3-L1 adipocytes and, upon fat cell differentiation, bind to and transactivate the promoter of the adipocyte-specific gene aP2. Further, fat cell differentiation is inhibited by cyclosporin A, a drug shown to prevent NFAT nuclear localization and hence function. Thus, these data suggest a role for NFAT transcription factors in the regulation of the aP2 gene and in the process of adipocyte differentiation.
Resumo:
Neurotrophic factor deprivation causes apoptosis by a mechanism that requires macromolecular synthesis. This fact suggests that gene expression is necessary to achieve cell death. To identify mRNA that is expressed in apoptotic cells we used subtractive hybridization with cDNA prepared from neuronal pheochromocytoma cells. Monoamine oxidase (MAO) expression was increased in cells during nerve growth factor withdrawal-induced apoptosis. The increased apoptosis and induction of MAO was prevented by inhibition of the p38 mitogen-activated protein (MAP) kinase pathway. MAO may contribute to the apoptotic process because inhibition of MAO activity suppressed cell death. Together, these data indicate that MAO may be a target of pro-apoptotic signal transduction by the p38 MAP kinase pathway.
Resumo:
S-Adenosyl-l-methionine:l-methionine S-methyltransferase (MMT) catalyzes the synthesis of S-methyl-l-methionine (SMM) from l-methionine and S-adenosyl-l-methionine. SMM content increases during barley (Hordeum vulgare L.) germination. Elucidating the role of this compound is important from both a fundamental and a technological standpoint, because SMM is the precursor of dimethylsulfide, a biogenic source of atmospheric S and an undesired component in beer. We present a simple purification scheme for the MMT from barley consisting of 10% to 25% polyethylene glycol fractionation, anion-exchange chromatography on diethylaminoethyl-Sepharose, and affinity chromatography on adenosine-agarose. A final activity yield of 23% and a 2765-fold purification factor were obtained. After digestion of the protein with protease, the amino acid sequence of a major peptide was determined and used to produce a synthetic peptide. A polyclonal antibody was raised against this synthetic peptide conjugated to activated keyhole limpet hemocyanin. The antibody recognized the 115-kD denatured MMT protein and native MMT. During barley germination, both the specific activity and the amount of MMT protein increased. MMT-specific activity was found to be higher in the root and shoot than in the endosperm. MMT could be localized by an immunohistochemical approach in the shoot, scutellum, and aleurone cells but not in the root or endosperm (including aleurone).
Resumo:
Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.
Resumo:
We have purified from hamster liver a second cysteine protease that cleaves and activates sterol regulatory element binding proteins (SREBPs). cDNA cloning revealed that this enzyme is the hamster equivalent of Mch3, a human enzyme that is related to the interleukin 1beta converting enzyme. We call this enzyme Mch3/SCA-2. It is 54% identical to hamster CPP32/SCA-1, a cysteine protease that was earlier shown to cleave SREBPs at a conserved Asp between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. This cleavage liberates an NH2-terminal fragment of approximately 460 amino acids that activates transcription of genes encoding the low density lipoprotein receptor and enzymes of cholesterol synthesis. Mch3/SCA-2 and CPP32/SCA-I are synthesized as inactive 30-35 kDa precursors that are thought to be cleaved during apoptosis to generate active fragments of approximately 20 and approximately 10 kDa. The current data lend further support to the notion that SREBPs are cleaved and activated as part of the program in programmed cell death.
Resumo:
ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP). We earlier reported the isolation from bovine brain cytosol of a 700-kDa protein complex containing GEP activity that was inhibited by brefeldin A (BFA). Partial purification yielded an approximately 60-kDa BFA-insensitive GEP that enhanced binding of ARF1 and ARF3 to Golgi membranes. GEP has now been purified extensively from rat spleen cytosol in a BFA-insensitive, approximately 55-kDa form. It activated class I ARFs (ARFs 1 and 3) that were N-terminally myristoylated, but not nonmyristoylated ARFs from class-I, II, or III. GEP activity required MgCl2. In the presence of 0.6-0.8 mM MgCl2 and 1 mM EDTA, binding of guanosine 5'-[gamma[35S]thio]triphosphate ([35S]GTP gamma S) by ARF1 and ARF3 was equally high without and with GEP. At higher Mg2+ concentrations, binding without GEP was much lower; with 2-5 mM MgCl2, GEP-stimulated binding was maximal. The rate of GDP binding was much less than that of GTP gamma S with and without GEP. Phospholipids were necessary for GEP activity; phosphatidylinositol was more effective than phosphatidylserine, and phosphatidic acid was less so. Other phospholipids tested were ineffective. Maximal effects required approximately 200 microM phospholipid, with half-maximal activation at 15-20 microM. Release of bound [35S]GTP gamma S from ARF3 required the presence of both GEP and unlabeled GTP or GTP gamma S; GDP was much less effective. This characterization of the striking effects of Mg2+ concentration and specific phospholipids on the purified BFA-insensitive ARF GEP should facilitate experiments to define its function in vesicular transport.
Resumo:
The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2)D3], a steroid hormone with immunomodulating properties, on nuclear factor kappa B (NF-kappa B) proteins was examined in in vitro activated normal human lymphocytes by Western blot analysis. Over a 72-hr period of activation, the expression of the 50-kDa NF-kappa B, p50, and its precursor, p105, was increased progressively. When cells were activated in the presence of 1,25(OH)2D3, the levels of the mature protein as well as its precursor were decreased. The effect of the hormone on the levels of p50 was demonstrable in the cytosolic and nuclear compartments; it required between 4 and 8 hr and was specific, as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were ineffective. Besides p50, 1,25(OH)2D3 decreased the levels of another NF-kappa B protein, namely c-rel. In addition, 1,25(OH)2D3 decreased the abundance of a specific DNA-protein complex formed upon incubation of nuclear extracts from activated lymphocytes with a labeled NF-kappa B DNA binding motif. Further, 1,25(OH)2D3 inhibited the transcriptional activity of NF-kappa B in Jurkat cells transiently transfected with a construct containing four tandem repeats of the NF-kappa B binding sequence of the immunoglobulin kappa light chain gene linked to the chloramphenicol acetyltransferase reporter gene. These observations demonstrate directly that there is de novo synthesis of NF-kappa B during human lymphocyte activation and suggest that this process is hormonally regulated.
Resumo:
Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.
Resumo:
A specific requirement for coenzyme Q in the maintenance of trans-plasma-membrane redox activity is demonstrated. Extraction of coenzyme Q from membranes resulted in inhibition of NADH-ascorbate free radical reductase (trans electron transport), and addition of coenzyme Q10 restored the activity. NADH-cytochrome c oxidoreductase (cis electron transport) did not respond to the coenzyme Q status. Quinone analogs inhibited trans-plasma-membrane redox activity, and the inhibition was reversed by coenzyme Q. A 34-kDa coenzyme Q reductase (p34) has been purified from pig-liver plasma membranes. The isolated enzyme was sensitive to quinone-site inhibitors. p34 catalyzed the NADH-dependent reduction of coenzyme Q10 after reconstitution in phospholipid liposomes. When plasma membranes were supplemented with extra p34, NADH-ascorbate free radical reductase was activated but NADH-cytochrome c oxidoreductase was not. These results support the involvement of p34 as a source of electrons for the trans-plasma-membrane redox system oxidizing NADH and support coenzyme Q as an intermediate electron carrier between NADH and the external acceptor ascorbate free radical.
Resumo:
Srp1p, the protein encoded by SRP1 of Saccharomyces cerevisiae, is a nuclear-pore-associated protein. Its Xenopus homolog, importin, was recently shown to be an essential component required for nuclear localization signal (NLS)-dependent binding of karyophilic proteins to the nuclear envelope [Gorlich, D., Prehn, S., Laskey, R. A. & Hartman, E. (1994) Cell 79, 767-778]. We have discovered a protein kinase whose activity is stimulated by Srp1p (Srp1p fused to glutathione S-transferase and expressed in Escherichia coli) and is detected by phosphorylation of Srp1p and of a 36-kDa protein, a component of the protein kinase complex. The enzyme, called Srp1p kinase, is a protein-serine kinase and was found in extracts in two related complexes of approximately 180 kDa and 220 kDa. The second complex, when purified, contained four protein components including the 36-kDa protein. We observed that, upon purification of the kinase, phosphorylation of Srp1p became very weak, while activation of phosphorylation of the 36-kDa protein by Srp1p remained unaltered. Significantly, NLS peptides and the nuclear proteins we have tested greatly stimulated phosphorylation of Srp1p, suggesting that Srp1p, complexed with karyophilic proteins carrying an NLS, is the in vivo substrate of this protein kinase.
Resumo:
O emprego da flotação por ar dissolvido (FAD) para o pós-tratamento de efluentes de reatores anaeróbios aparenta ser atraente considerando algumas características desse processo físico-químico. A FAD é reconhecidamente um processo de alta taxa, particularmente eficiente na remoção de material particulado em suspensão e de flocos produzidos pela coagulação química de águas residuárias. Além disso, há produção de lodo espesso e provavelmente arraste de parcela de gases e de compostos voláteis, presentes nos efluentes anaeróbios. Entretanto, a concepção de sistemas de FAD deve ser precedida por ensaios em unidades de flotação em escala de laboratório, permitindo a determinação dos principais parâmetros do processo. Neste trabalho, são apresentados e discutidos os resultados obtidos em laboratório e em instalação piloto de flotação com escoamento contínuo recebendo efluente de reator anaeróbio de manta de lodo (UASB), com 18 m3 de volume, tratando esgoto sanitário. Os ensaios em unidade em escala de laboratório foram realizados utilizando diferentes dosagens de cloreto férrico (entre 30 e 110 mg/L) ou de polímero catiônico (entre 1,0 e 16,0 mg/L), atuando como coagulantes. Além disso, foram estudadas as condições de floculação (tempo de 15 e de 25 min, e gradiente médio de velocidade de floculação entre 30 e 100 s-1) e diferentes valores de quantidade de ar fornecido ao processo (S*, entre 4,7 e 28,5 g de ar por m3 de efluente). Com a instalação piloto de FAD foram realizados apenas ensaios preliminares variando-se a taxa de aplicação superficial (140 e 210 m3/m2/d) para diferentes valores de S* (14,8 a 29,5 g de ar por m3 de efluente). Com o emprego de dosagem de 65 mg/L de cloreto férrico, de tempo de 15 min e gradiente médio de velocidade de floculação de 80 s-1 e de 19 g de ar por m3 de efluente, foram observados excelentes resultados em laboratório, com elevadas remoções de DQO (89%), de fosfato total (96%), de sólidos suspensos totais (96%), de turbidez (98%), de cor aparente (91%), de sulfetos (não detectado) e NTK (47%). Considerando o sistema UASB e FAD, nos testes em laboratório, foram observadas remoções globais de 97,7% de DQO, de 98,0% de fosfato total, de 98,9% de SST, de 99,5% de turbidez, de 97,8% de cor aparente e de 59,0% de NTK. Nos ensaios com a instalação piloto de FAD, o sistema apresentou remoções de 93,6% de DQO, de 87,1% de SST, de 90% de sulfetos e de 30% de NTK.
Resumo:
Activated carbon fibre monoliths were prepared by physical activation of carbon fibre monoliths derived from two kinds of pitch-based carbon fibre (CF) (carbon fibres from a coal tar pitch and carbon fibres derived from a petroleum pitch). The monoliths were conformed using a coal tar pitch binder. The carbon fibre monoliths and the activated carbon fibre monoliths were studied by scanning electron microscopy (SEM) and gas adsorption (i.e. N2 at 77 K and CO2 at 273 K). The results obtained reveal that monoliths perform a good activation process that produce a quite high development of microporosity (BET surface areas around 2600 m2/g and N2 micropore volume of 1.23 cm3/g). On the other hand, it is remarkable that the activation process used allow to easily control the degree of activation and hence to select the adsorption capacities of the activated carbon fibre monoliths.
Resumo:
Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.
Resumo:
To study the possibility of producing better water quality from municipal wastewater, a membrane bioreactor (MBR) pilot plant with flat sheet (FS) and hollow fiber (HF) membranes coupled with another pilot plant equipped with nanofiltration (NF)/reverse osmosis (RO) membranes were operated to treat municipal wastewater from the wastewater treatment plant (WWTP) Rincón de León, Alicante (Spain). This study was focused on improving the quality of the permeate obtained from the MBR process when complemented by NF or RO stages with respect to salinity, organic matter and nutrients. Furthermore, the removal efficiencies of 10 EMPs were evaluated, comparing the reductions achieved between the wastewater treatment by MBR (adsorption to sludge and biodegradation) and the later treatment using NF or RO (mainly size exclusion). The results showed that the high quality of water was obtained which is appropriate for reuse with salinity removal efficiencies higher than 97%, 96% for total organic carbon (TOC), 91% for nitrates View the MathML sourceNO3- and 99% for total phosphorous (TP). High removal efficiencies were obtained for the majority of the analyzed EMP compounds.
Resumo:
The low temperature water–gas shift (WGS) reaction has been studied over carbon-supported nickel catalysts promoted by ceria. To this end, cerium oxide has been dispersed (at different loadings: 10, 20, 30 and 40 wt.%) on the activated carbon surface with the aim of obtaining small ceria particles and a highly available surface area. Furthermore, carbon- and ceria-supported nickel catalysts have also been studied as references. A combination of N2 adsorption analysis, powder X-ray diffraction, temperature-programmed reduction with H2, X-ray photoelectron spectroscopy and TEM analysis were used to characterize the Ni–CeO2 interactions and the CeO2 dispersion over the activated carbon support. Catalysts were tested in the low temperature WGS reaction with two different feed gas mixtures: the idealized one (with only CO and H2O) and a slightly harder one (with CO, CO2, H2, and H2O). The obtained results show that there is a clear effect of the ceria loading on the catalytic activity. In both cases, catalysts with 20 and 10 wt.% CeO2 were the most active materials at low temperature. On the other hand, Ni/C shows a lower activity, this assessing the determinant role of ceria in this reaction. Methane, a product of side reactions, was observed in very low amounts, when CO2 and H2 were included in the WGS feed. Nevertheless, our data indicate that the methanation process is mainly due to CO2, and no CO consumption via methanation takes place at the relevant WGS temperatures. Finally, a stability test was carried out, obtaining CO conversions greater than 40% after 150 h of reaction.