959 resultados para Severe Plastic-Deformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alloy, Ti-6Al-4V is an alpha + beta Ti alloy that has large prior beta grain size (similar to 2 mm) in the as cast state. Minor addition of B (about 0.1 wt.%) to it refines the grain size significantly as well as produces in-situ TiB needles. The role played by these microstructural modifications on high temperature deformation processing maps of B-modified Ti64 alloys is examined in this paper.Power dissipation efficiency and instability maps have been generated within the temperature range of 750-1000 degrees C and strain rate range of 10(-3)-10(+1) s(-1). Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate four distinct deformation domains within the range of experimental conditions examined, with the combination of 900-1000 degrees C and 10(-3)-10(-2) s(-1) being the optimum for hot working. In that zone, dynamic globularization of alpha laths is the principle deformation mechanism. The marked reduction in the prior beta grain size, achieved with the addition of B, does not appear to alter this domain markedly. The other domains, with negative values of instability parameter, show undesirable microstructural features such as extensive kinking/bending of alpha laths and breaking of beta laths for Ti64-0.0B as well as generation of voids and cracks in the matrix and TiB needles in the B-modified alloys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curing reactions of the viscous PS prepolymer and PS/AP propellant slurry have been studied. The molecular weight of the binder (separated from the propellant) and the prepolymer was found to increase to a maximum value, remain constant for some time, and then fall off between 50–125°C. The molecular weight of the binder was found to be less than corresponding prepolymer between 100–150°C but at lower temperatures (50–75°C) the reverse was found to be true. The increase in the molecular weight during curing at lower temperatures has been explained on the basis of Trommsdorff effect which gets support from the estimated activation energy (9 kcal mole−1) for the curing process. Curing was recognized as chain extension where the rate of polymerization becomes diffusion controlled below 75° C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) s(-1) and 1 s(-1)). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large a colonies of Ti64. In contrast, a colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz, grain size refinement and presence of TiB particles at grain boundary produced due to boron addition. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cast aluminium alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40µm – 120µm) the tensile and compression strengths of aluminium alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work [2] shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/mm2 and compression strength of 28 kg/mm2 performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminium-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behaviour of polycrystalline nickel has been characterised in the temperature range 750-1200-degrees-C and strain rate range 0.0003-100 s-1 using processing maps developed in the basis of the dynamic materials model. The efficiency of power dissipation, given by [2m/(m + 1)]. where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified, with a peak efficiency of 31% occurring at 925-degrees-C and 1 s-1. The published results are in agreement with the prediction of the processing map. The variations of efficiency of power dissipation with temperature and strain rate in the dynamic recrystallisation domain are identical to the corresponding variation of hot ductility. The stress-strain curves exhibited a single peak in a single peak in the dynamic recrystallisation domain, whereas multiple peaks and 'drooping' stress-strain curves were observed at lower and higher strain rates, respectively. The results are explained on the basis of a simple model which considers dynamic recrystallisation in terms of rates of interface formation (nucleation) and migration (growth). It is shown that dynamic recrystallisation in nickel is controlled by the rate of nucleation, which is slower than the rate of migration. The rate of nucleation itself depends on the process of thermal recovery by climb, which in turn depends on self-diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compression test flow stress data of Al-4Mg alloy at different temperatures and strain rates are analysed using a dynamic materials model which considers the workpiece material as a dissipator of power causing microstructural changes. A processing map representing the efficiency of power dissipation as a function of temperature and strain rate has been established and optimum processing conditions for the alloy are determined. The features of the map correlate well with the microstructure and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress relaxation testing is often utilised for determining whether athermal straining contributes to plastic flow; if plastic strain rate is continuous across the transition from tension to relaxation then plastic strain is fully thermally activated. This method was applied to an aged type 316 stainless steel tested in the temperature range 973–1123 K and to a high purity Al in the recrystallised annealed condition tested in the temperature range 274–417 K. The results indicated that plastic strain is thermally activated in these materials at these corresponding test temperatures. For Al, because of its high strain rate sensitivity, it was necessary to adopt a back extrapolation procedure to correct for the finite period that the crosshead requires to decelerate from the constant speed during tension to a dead stop for stress relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kocks' formalism for analysing steady state deformation data for the case where Cottrell-Stokes law is valid is extended to incorporate possible back stresses from solution and/or precipitation hardening, and dependence of pre-exponential factor on the applied stress. A simple graphical procedure for exploiting these equations is demonstrated by analyzing tensile steady state data for a type 316 austentic stainless steel for the temperature range 1023 to 1223 K. In this instance, the computed back stress values turned out to be negative, a physically meaningless result. This shows that for SS 316, deformation in this temperature regime can not be interpreted in terms of a mechanism that obeys Cottrell-Stokes law.