838 resultados para Sepsis neonatal


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose features extracted from the heart rate variability (HRV) based on the first and second conditional moments of time-frequency distribution (TFD) as an additional guide for seizure detection in newborn. The features of HRV in the low frequency band (LF: 0-0.07 Hz), mid frequency band (MF: 0.07-0.15 Hz), and high frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency analysis using the modified-B distribution (MBD). Results of ongoing time-frequency research are presented. Based on our preliminary results, the first conditional moment of HRV which is also known as the mean/central frequency in the LF band and the second conditional moment of HRV which is also known as the variance/instantaneous bandwidth (IB) in the HF band can be used as a good feature to discriminate the newborn seizure from the non-seizure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The objective of this study was to determine whether neonatal nasogastric enteral feeding tubes are colonised by the opportunistic pathogen Cronobacter spp. (Enterobacter sakazakii) and other Enterobacteriaceae, and whether their presence was influenced by the feeding regime. Methods One hundred and twenty-nine tubes were collected from two neonatal intensive care units (NICU). A questionnaire on feeding regime was completed with each sample. Enterobacteriaceae present in the tubes were identified using conventional and molecular methods, and their antibiograms determined. Results The neonates were fed breast milk (16%), fortified breast milk (28%), ready to feed formula (20%), reconstituted powdered infant formula (PIF, 6%), or a mixture of these (21%). Eight percent of tubes were received from neonates who were 'nil by mouth'. Organisms were isolated from 76% of enteral feeding tubes as a biofilm (up to 107 cfu/tube from neonates fed fortified breast milk and reconstituted PIF) and in the residual lumen liquid (up to 107 Enterobacteriaceae cfu/ml, average volume 250 µl). The most common isolates were Enterobacter cancerogenus (41%), Serratia marcescens (36%), E. hormaechei (33%), Escherichia coli (29%), Klebsiella pneumoniae (25%), Raoultella terrigena (10%), and S. liquefaciens (12%). Other organisms isolated included C. sakazakii (2%),Yersinia enterocolitica (1%),Citrobacter freundii (1%), E. vulneris (1%), Pseudomonas fluorescens (1%), and P. luteola (1%). The enteral feeding tubes were in place between < 6 h (22%) to > 48 h (13%). All the S. marcescens isolates from the enteral feeding tubes were resistant to amoxicillin and co-amoxiclav. Of additional importance was that a quarter of E. hormaechei isolates were resistant to the 3rd generation cephalosporins ceftazidime and cefotaxime. During the period of the study, K. pneumoniae and S. marcescens caused infections in the two NICUs. Conclusion This study shows that neonatal enteral feeding tubes, irrespective of feeding regime, act as loci for the bacterial attachment and multiplication of numerous opportunistic pathogens within the Enterobacteriaceae family. Subsequently, these organisms will enter the stomach as a bolus with each feed. Therefore, enteral feeding tubes are an important risk factor to consider with respect to neonatal infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serratia spp. are an important cause of hospital-acquired infections and outbreaks in high-risk settings. Twenty-one patients were infected or colonized over a nine-month period during 2001-2002 on a neonatal unit. Twenty-two isolates collected were examined for antibiotic susceptibility, β-lactamase production and genotype. Random-amplified polymorphic DNA polymerase chain reaction and pulsed-field gel electrophoresis revealed that two clones were present. The first clone caused invasive clinical infection in four babies, and was subsequently replaced by a non-invasive clone that affected 14 babies. Phenotypically, the two strains also differed in their prodigiosin production; the first strain was non-pigmented whereas the second strain displayed pink-red pigmentation. Clinical features suggested a difference in their pathogenicity. No environmental source was found. The outbreak terminated following enhanced compliance with infection control measures and a change of antibiotic policy. Although S. marcescens continued to be isolated occasionally for another five months of follow-up, these were sporadic isolates with distinct molecular typing patterns. © 2005 The Hospital Infection Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixty coagulase-negative staphylococcus (CNS) isolates were recovered from the blood cultures or peritoneal dialysate effluent of 43 patients on renal dialysis. The patients had either renal dialysis catheter-related sepsis (CRS) or continuous ambulatory peritoneal dialysis (CAPD)-associated peritonitis. Isolates were characterized by biotyping, and genotyped by pulsed-field gel electrophoresis (PFGE). Phenotypic properties of the strains were also investigated. Several genotypes were identified with no one specific strain of CNS being associated with CRS. However, closely related strains were isolated from several patients within the units studied, suggesting horizontal transfer of micro-organisms. Genotypic macro-restriction profiles did not concur with phenotypic profiles or biotypes, confirming that genotyping is required for epidemiological studies. All staphylococcal strains were investigated for the production of phenotypic characteristics. Significant differences were predominantly seen in the production of lipase, esterase and elastase in strains isolated from the renal patients with CRS and CAPD-associated peritonitis, compared with a non-septic control group. These phenotypic characteristics may therefore have a role in the maintenance of CRS in renal patients. © 2003 The Hospital Infection Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis continues to be a major cause of morbidity and mortality as it can readily lead tosevere sepsis, septic shock, multiple organ failure and death. The onset can be rapid and difficult to define clinically. Despite the numerous candidate markers proposed in the literature, to date a serum marker for sepsis has not been found. The aim of this study was to assay the serum of clinically diagnosed patients with eithera Gram-negative or Gram- positive bacterial sepsis for elevated levels of nine potentialmarkers of sepsis, using commercially produced enzyme linked immunosorbent assays(ELISA). The purpose was to find a test marker for sepsis that would be helpful toclinicians in cases of uncertain sepsis and consequently expose false positive BC'scaused by skin or environmental contaminants. Nine test markers were assayed including IL-6, IL-I 0, ILI2, TNF-α, lipopolysaccharide binding protein, procalcitonin, sE-selectin, sICAM -1 and a potential differential marker for Gram-positive sepsis- anti-lipid S antibody. A total of 445 patients were enrolled into this study from the Queen Elizabeth Hospital and Selly Oak Hospital (Birmingham). The results showed that all the markers were elevated in patients with sepsis and that patients with a Gram-negative sepsis consistently produced higher median/range serum levels than those with a Gram-positive sepsis. No single marker was able to identify all the septic patients. Combining two markers caused the sensitivities and specificities for a diagnosis of sepsis to increase to within a 90% to 100% range. By a process of elimination the markers that survived into the last phase were IL-6 with sICAM -1, and anti-lipid S IgG assays Defining cut-off levels for a diagnosis of sepsis became problematic and a semi-blind trial was devised to test the markers in the absence of both clinical details and positive blood cultures. Patients with pyrexia of unknown origin and negative BC were included in this phase (4). The results showed that IL-6 with sICAM-l are authentic markers of sepsis. There was 82% agreement between the test marker diagnosis and the clinical diagnosis for sepsis in patients with a Gram-positive BC and 78% agreement in cases of Gram-negative Be. In the PUO group the test markers identified 12 cases of sepsis and the clinical diagnosis 15. The markers were shown to differentiate between early sepsis and sepsis, inflammatory responses and infection. Anti-lipid S with IL-6 proved be a sensitive marker for Gram-positive infections/sepsis.