963 resultados para Sensitive Protein Gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medulloblastomas are the most common malignant tumors of the central nervous system in childhood. The incidence is about 19-20% between children younger than 16 years old with peak incidence between 4 and 7 years. Despite its sensibility to no specific therapeutic means like chemotherapy and radiotherapy, the treatment is very aggressive and frequently results in regression, growth deficit, and endocrine dysfunction. From this point of view, new treatment approaches are needed such as molecular targeted therapies. Studies in glioblastoma demonstrated that ASPM gene was overexpressed when compared to normal brain and ASPM inhibition by siRNA-mediated inhibits tumor cell proliferation and neural stem cell proliferation, supporting ASPM gene as a potential molecular target in glioblastoma. The aim of this work was to evaluate ASPM expression in medulloblastoma fragment samples, and to compare the results with the patient clinical features. Analysis of gene expression was performed by quantitative PCR real time using SYBR Green system in tumor samples from 37 children. The t test was used to analyze the gene expression, and Mann-Whitney test was performed to analyze the relationship between gene expressions and clinical characteristics. Kaplan-Meier test evaluated curve survival. All samples overexpressed ASPM gene more than 40-fold. However, we did not find any association between the overexpressed samples and the clinical parameters. ASPM overexpression may modify the ability of stem cells to differentiate during the development of the central nervous system, contributing to the development of medulloblastoma, a tumor of embryonic origin from cerebellar progenitor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe a new FOXL2 gene mutation in a woman with sporadic blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and hypergonadotropic hypogonadism. Design: Case report. Setting: University medical center. Patient(s): A 28-year-old woman. Intervention(s): Clinical evaluation, hormone assays, gene mutation research. Main Outcome Measure(s): FOXL2 gene mutation. Result(s): The patient with hypergonadotropic hypogonadism was diagnosed with BPES due to a new FOXL2 gene mutation. Conclusion(s): Blepharophimosis-ptosis-epicanthus inversus syndrome is a rare disorder associated with premature ovarian failure (POF). The syndrome is an autosomal dominant trait that causes eyelid malformations and POF in affected women. Mutations in FOXL2 gene, located in chromosome 3, are related to the development of BPES with POF (BPES type I) or without POF (BPES type II). This report demonstrates a previously undescribed de novo mutation in the FOXL2 gene-a thymidine deletion, c. 627delT (g. 864delT)-in a woman with a sporadic case of BPES and POF. This mutation leads to truncated protein production that is related to a BPES type I phenotype. This report shows the importance of family history and genetic analysis in the evaluation of patients with POF and corroborates the relationship between mutations on the FOXL2 gene and ovarian insufficiency. (Fertil Steril (R) 2010; 93: 1006.e3-e6. (C) 2010 by American Society for Reproductive Medicine.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the luteal phase endometrial expression of leukemia inhibitor factor (LIF), insulin-like growth factor 1 (IGF-1), progesterone receptor (PR), claudin 4 (CLDN4), vascular-endothelial growth factor receptor 3 (VEGFR-3), bone morphogenetic protein 4 (BMP-4) and citokeratin 7 (CK-7), we obtained luteal phase endometrial samples from 52 women. Samples were dated and integrated using a tissue microarray (TMA). Samples were immunostained for LIF, IGF-1, PR, CLDN4, VEGFR-3, BMP-4 and CK-7. Frequencies of positive expressions at the early, mid and late luteal phases were compared by two proportions test. Concomitant expression of these proteins was assessed with Chi-square or Fischer`s test. The frequency of LIF was positively correlated to the frequency of IGF-1 (r = 0.99; p < 0.05) and PR (r = 0.99; p < 0.05), and the correlation between IGF-1 and PR tended to be significant (r = 0.98; p < 0.1). The expression of PR was associated with the absence of CLDN4 (p < 0.001). Thus, expression of LIF, IGF-1 and PR are correlated during the luteal phase, and immunohistochemistry for these proteins might be used to assist in the assessment of endometrial maturation. In addition, the expression of CLDN4 and PR was not concomitant, warranting further investigation on the relationship of their endometrial expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: The expression of sodium iodide symporter (NIS) is required for iodide uptake in thyroid cells. Benign and malignant thyroid tumors have low iodide uptake. However, previous studies by RT-PCR or immunohistochemistry have shown divergent results of NIS expression in these nodules. Objective: The objective of the study was to investigate NIS mRNA transcript levels, compare with NIS and TSH receptor proteins expression, and localize the NIS protein in thyroid nodules samples and their surrounding nonnodular tissues (controls). Design: NIS mRNA levels, quantified by real-time RT-PCR, and NIS and TSH receptor proteins, evaluated by immunohistochemistry, were examined in surgical specimens of 12 benign and 13 malignant nodules and control samples. Results: When compared with controls, 83.3% of the benign and 100% of the malignant nodules had significantly lower NIS gene expression. Conversely, 66.7% of the benign and 100% of malignant nodules had stronger intracellular NIS immunostaining than controls. Low gene expression associated with strong intracellular immunostaining was most frequently detected in malignant (100%) than benign nodules (50%; P = 0.005). NIS protein was located at the basolateral membrane in 24% of the control samples, 8.3% of the benign, and 15.4% of the malignant nodules. The percentage of benign nodules with strong TSH receptor positivity (41.6%) was higher than malignant (7.7%). Conclusion: We confirmed that reduced NIS mRNA expression in thyroid malignant nodules is associated with strong intracellular protein staining and may be related to the inability of the NIS protein to migrate to the cellular basolateral membrane. These results may explain the low iodide uptake of malignant nodules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To analyse and compare the expression of Palate, Lung, and Nasal Epithelium Clone (PLUNC) proteins in salivary glands from patients with and without AIDS (control group) using autopsy material. Methods: We analysed the expression of PLUNCs using immunohistochemistry in parotid (n = 45), submandibular (n = 47) and sublingual gland (n = 37) samples of AIDS patients [30 with normal histology, 21 with mycobacteriosis, 14 with cytomegalovirus (CMV) infection, 30 with chronic non-specific sialadenitis, and 30 HIV-negative controls. In situ hybridization (ISH) for SPLUNC 2 in the HIV-negative group was performed. Results: SPLUNC 1 expression was detected in the mucous acini of submandibular and sublingual glands, and SPLUNC 2 were seen in the serous cells. LPLUNC 1 expression was only positive in the salivary ducts. There was a higher expression of SPLUNC 2 in AIDS patients with CMV infection and mycobacteriosis when compared with all other groups. The intensity of staining for SPLUNC 2 was greater around the lesions than the peripheral ones. ISH for SPLUNC 2 showed perinuclear positivity in the serous cells in all HIV-negative cases. Conclusions: SPLUNC 1 and LPLUNC 1 proteins were similarly expressed in the salivary glands of AIDS patients and non-HIV patients. CMV infection and mycobacteriosis increase SPLUNC 2 expression in serous cells in the salivary gland of AIDS patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Steroidogenic factor 1 (SF-1) is a key determinant of endocrine development and function of adrenal cortex. SF-1 overexpression and gene amplification were previously demonstrated in a small group of pediatric adrenocortical tumors. Objective: Our objective was to determine the frequency of SF-1 protein expression and gene amplification in a large cohort of pediatric and adult adrenocortical tumors. Patients: SF-1 protein expression was assessed in a cohort of 103 adrenocortical tumors from 36 children and 67 adults, whereas gene amplification was studied in 38 adrenocortical tumors ( 17 from children). Methods: Tissue microarray, multiplex ligation-dependent probe amplification, and quantitative real-time PCR were used. Results: Astrong nuclear SF-1 expression was detected by tissue microarray in 56% (20 of 36) and 19% (13 of 67) of the pediatric and adult adrenocortical tumors, respectively (P = 0.0004). Increased SF-1 copy number was identified in 47% (eight of 17) and 10% (two of 21) of the pediatric and adult adrenocortical tumors, respectively (P = 0.02). All adrenocortical tumors with SF-1 gene amplification showed a strong SF-1 staining, whereas most of the tumors (61%) without SF-1 amplification displayed a weak or negative staining (P = 0.0008). Interestingly, a strong SF-1 staining was identified in five (29%) pediatric adrenocortical tumors without SF-1 amplification. The frequency of SF-1 overexpression and gene amplification was similar in adrenocortical adenomas and carcinomas. Conclusion: We demonstrated a higher frequency of SF-1 overexpression and gene amplification in pediatric than in adult adrenocortical tumors, suggesting an important role of SF-1 in pediatric adrenocortical tumorigenesis. (J Clin Endocrinol Metab 95: 1458-1462, 2010)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of studies have shown altered expression of secreted protein acidic and rich in cysteine (SPARC) and N-myc down-regulated gene (NDRG1) in several malignancies, including breast carcinoma; however, the role of these potential biomarkers in tumor development and progression is controversial. In this study, NDRG1 and SPARC protein expression was evaluated by immunohistochemistry on tissue microarrays containing breast tumor specimens from patients with 10 years of follow-up. NDRG1 and SPARC protein expression was determined in 596 patients along with other prognostic markers, such as ER, PR, and HER2. The status of NDRG1 and SPARC protein expression was correlated with prognostic variables and patient clinical outcome. Immunostaining revealed that 272 of the 596 cases (45.6%) were positive for NDRG1 and 431 (72.3%) were positive for SPARC. Statistically significant differences were found between the presence of SPARC and NDRG1 protein expression and standard clinicopathological variables. Kaplan-Meier analysis showed that NDRG1 positivity was directly associated with shorter disease-free survival (DFS, P < 0.001) and overall survival (OS, P < 0.001). In contrast, patients expressing low levels of SPARC protein had worse DFS (P = 0.001) and OS (P = 0.001) compared to those expressing high levels. Combined analysis of the two markers indicated that DFS (P < 0.001) and OS rates (P < 0.001) were lowest for patients with NDRG1-positive and SPARC-negative tumors. Furthermore, NDRG1 over-expression and SPARC down-regulation correlated with poor prognosis in patients with luminal A or triple-negative subtype breast cancer. On multivariate analysis using a Cox proportional hazards model, NDRG1 and SPARC protein expression were independent prognostic factors for both DFS and OS of breast cancer patients. These data indicate that NDRG1 over-expression and SPARC down-regulation could play important roles in breast cancer progression and serve as useful biomarkers to better define breast cancer prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31 CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) ""single nucleotide polymorphism""/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at 1436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. (C) 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: FGFR1 mutations cause isolated hypogonadotropic hypogonadism (IHH) with or without olfactory abnormalities, Kallmann syndrome, and normosmic IHH respectively. Recently, missense mutations in FGF8, a key ligand for fibroblast growth factor receptor (FGFR) 1 in the ontogenesis of GnRH, were identified in IHH patients, thus establishing FGF8 as a novel locus for human GnRH deficiency. Objective: Our objective was to analyze the clinical, hormonal, and molecular findings of two familial IHH patients due to FGF8 gene mutations. Methods and Patients: The entire coding region of the FGF8 gene was amplified and sequenced in two well-phenotyped IHH probands and their relatives. Results: Two unique heterozygous nonsense mutations in FGF8(p.R127X and p.R129X) were identified in two unrelated IHH probands, which were absent in 150 control individuals. These two mutations, mapped to the core domain of FGF8, impact all four human FGF8 isoforms, and lead to the deletion of a large portion of the protein, generating nonfunctional FGF8 ligands. The p.R127X mutation was identified in an 18-yr-old Kallmann syndrome female. Her four affected siblings with normosmic IHH or delayed puberty also carried the p.R127X mutation. Additional developmental anomalies, including cleft lip and palate and neurosensorial deafness, were also present in this family. The p.R129X mutation was identified in a 30-yr-old man with familial normosmic IHH and severe GnRH deficiency. Conclusions: We identified the first nonsense mutations in the FGF8 gene in familial IHH with variable degrees of GnRH deficiency and olfactory phenotypes, confirming that loss-of-function mutations in FGF8 cause human GnRH deficiency. (J Clin Endocrinol Metab 95: 3491-3496, 2010)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantial experimental evidence indicates that PAWR gene (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) is a central player in cancer cell survival and a potential target for cancer-selective targeted therapeutics. However, little is known about the role of PAR-4 in breast cancer. We investigated the possible role of PAR-4 expression in breast cancer. IHC results on tissue microarrays containing 1,161 primary breast tumor samples showed that 57% (571/995) of analyzable cases were negative for PAR-4 nuclear staining. Down-regulation of nuclear PAR-4 protein expression predicted a poor prognosis for breast cancer patients (OS; P=0.041, log-rank test). PAR-4 down-regulation also correlates with poor survival in the group of patients with luminal A subtype breast cancer (P=0.028). Additionally, in this large series of breast cancer patients, we show that ERBB2/HER2, EGFR and pAKT protein expression are significantly associated with shorter disease-free survival and overall survival, but the prognosis was even worse for HER2-positive, EGFR-positive or pAKT-positive breast cancer patients with tumors negative for nuclear PAR-4 expression. Furthermore, using three-dimensional (3D) cell culture we provide preliminary results showing that PAR-4 is highly expressed in the MCF10A cells inside the acini structure, suggesting that PAR-4 might have a role in the lumen acini formation. Taken together, our results provide, for the first time, evidence that PAR-4 may have a role in the process of the mammary eland morphogenesis and its functional inactivation is associated with tumor aggressive phenotype and might represent an additional prognostic and predictive marker for breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder with an autosomal recessive pattern of inheritance. The gene for WS, WFS1, was identified on chromosome 4p16 and most WS patients carry mutations in this gene. However. some studies have provided evidence for genetic heterogeneity and the genotype-phenotype relationships are not clear. Our aim was to ascertain the spectrum of WFS1 mutations in Brazilian patients with WS and to examine the phenotype-genotype relationships in these patients. Design and methods: Clinical characterization and analyses of the WFS1. gene were performed in 27 Brazilian patients with WS from 19 families. Results: We identified 15 different mutations in the WFS1 gene in 26 patients, among which nine are novel. All mutations occurred in exon 8, except for one missense mutation which was located in exon 5. Although we did not find any clear phenotype-genotype relationship in patients with mutations in exon 8, the homozygous missense mutation in exon 5 was associated with a mild phenotype: onset of diabetes mellitus and optic atrophy during adulthood with good metabolic control being achieved with low doses of sulfonylurea Conclusions: Our data show that WFS1 is the major gene involved in WS in Brazilian patients and most mutations are concentrated in exon 8. Also, our study increases the spectrum of WFS1 mutations. Although no clear phenotype-genotype relationship was found for mutations in exon 8, a mild phenotype was associated with a homozygous missense mutation in exon 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. We sought to evaluate 2 sing] e-nucleotide polymorphisms (SNPs) in the C-reactive protein (CRP) gene promoter region for their effects on CRP levels in chronic kidney disease (CKD) patients before and after a successful kidney transplantation. Methods. Fifty CKD patients were evaluated before and at the first and second years after the graft. Two SNPs were studied, a bi-allelic (G -> A) at the -409 and a tri-allelic (C -> T -> A) variation at the -390 position in the CRP gene. Results. All patients presented the -409GG genotype. At the -390 position, the ""A"" allele was not found; there were 15 ""CC"" patients, 11 ""TT"" patients, and 24 ""CT"" patients. CRP levels were different among patients with various genotypes (P < .019). Also the presence of the allele ""T"" was sufficient to determine differences in CRP levels both in pretransplantation (P = .045) and at 1 year posttransplantation (P = .011), but not at the second year (P = .448). Conclusion. SNPs at the -390 position of the CRP gene promoter region influence CRP basal levels in such a way that the ""C"" allele correlated with the lowest and the ""T"" with the highest. We did not observe this influence in our patients at the second year posttransplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the identification of a novel mutation at a highly conserved residue within the N-terminal region of spermine synthase (SMS) in a second family with Snyder-Robinson X-linked mental retardation syndrome ( OMIM 309583). This missense mutation, p.G56S, greatly reduces SMS activity and leads to severe epilepsy and cognitive impairment. Our findings contribute to a better delineation and expansion of the clinical spectrum of Snyder-Robinson syndrome, support the important role of the N-terminus in the function of the SMS protein, and provide further evidence for the importance of SMS activity in the development of intellectual processing and other aspects of human development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.